Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Apr 12;440(2-3):99-107.
doi: 10.1016/s0014-2999(02)01421-8.

beta(3)-Adrenoceptor agonists: potential, pitfalls and progress

Affiliations
Review

beta(3)-Adrenoceptor agonists: potential, pitfalls and progress

Jonathan R S Arch. Eur J Pharmacol. .

Abstract

beta(3)-Adrenoceptor agonists are very effective thermogenic anti-obesity and insulin-sensitising agents in rodents. Their main sites of action are white and brown adipose tissue, and muscle. beta(3)-Adrenoceptor mRNA levels are lower in human than in rodent adipose tissue, and adult humans have little brown adipose tissue. Nevertheless, beta(3)-adrenoceptors are expressed in human white as well as brown adipose tissue and in skeletal muscle, and they play a role in the regulation of energy balance and glucose homeostasis. It is difficult to identify beta(3)-adrenoceptor agonist drugs because the pharmacology of both beta(3)- and beta(1)-adrenoceptors can vary; near absolute selectivity is needed to avoid beta(1/2)-adrenoceptor-mediated side effects and selective agonists tend to have poor oral bioavailability. All weight loss is lipid and lean may actually increase, so reducing weight loss relative to energy loss. beta(3)-adrenoceptor agonists have a more rapid insulin-sensitising than anti-obesity effect, possibly because stimulation of lipid oxidation rapidly lowers intracellular long-chain fatty acyl CoA and diacylglycerol levels. This may deactivate those protein kinase C isoenzymes that inhibit insulin signalling.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources