Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 May;80(2-3):155-61.
doi: 10.1016/s0378-8741(02)00023-5.

Ethanol extract of propolis inhibits nitric oxide synthase gene expression and enzyme activity

Affiliations

Ethanol extract of propolis inhibits nitric oxide synthase gene expression and enzyme activity

Yun Seon Song et al. J Ethnopharmacol. 2002 May.

Abstract

Propolis obtained from honeybee hives has been used in Oriental folk medicine as an anti-inflammatory, anti-carcinogenic, or immunomodulatory agent. However, the molecular basis for anti-inflammatory properties of propolis has not yet been established. Since nitric oxide (NO) synthesized by inducible nitric oxide synthase (iNOS) has been known to be involved in inflammatory and autoimmune-mediated tissue destruction, modulation of NO synthesis or action represents a new approach to the treatment of inflammatory and autoimmune diseases. The present study, therefore, examined effects of ethanol extract of propolis (EEP) on iNOS expression and activity of iNOS enzyme itself. Treatment of RAW 264.7 cells with EEP significantly inhibited NO production and iNOS protein expression induced by lipopolysaccharide (LPS) plus interferon-gamma (IFN-gamma). EEP also inhibited iNOS mRNA expression and nuclear factor-kappa B (NF-kappaB) binding activity in a concentration-dependent manner. Furthermore, transfection of RAW 264.7 cells with iNOS promoter linked to a chloramphenicol acetyltransferase (CAT) reporter gene, revealed that EEP inhibited the iNOS promoter activity induced by LPS plus IFN-gamma through the NF-kappaB sites of the iNOS promoter. In addition, EEP directly interfered with the catalytic activity of murine recombinant iNOS enzyme. These results suggest that EEP may exert its anti-inflammatory effect by inhibiting the iNOS gene expression via action on the NF-kappaB sites in the iNOS promoter and by directly inhibiting the catalytic activity of iNOS.

PubMed Disclaimer

MeSH terms

LinkOut - more resources