Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Jun;3(6):388-96.
doi: 10.1034/j.1600-0854.2002.30602.x.

Hassles with taking out the garbage: aggravating aggresomes

Affiliations
Free article
Review

Hassles with taking out the garbage: aggravating aggresomes

Rafael Garcia-Mata et al. Traffic. 2002 Jun.
Free article

Abstract

Diverse human diseases ranging from amyloidosis to neurodegenerative diseases are now recognized as 'conformational diseases' caused by protein misfolding and protein aggregation. Misfolded and aggregated proteins are usually handled in the cell through chaperone-mediated refolding, or when that is impossible, destroyed by proteasomal degradation. Recent evidence suggests that cells might have evolved a third pathway that involves the sequestration of aggregated proteins into specialized 'holding stations' called aggresomes. The aggresomal pathway provides a mechanism by which aggregated proteins form particulate (approximately 200 nm) mini-aggregates that are transported on microtubules (MTs) towards the MT organizing center (MTOC) by a process mediated by the minus-end motor protein dynein. Once at the MTOC, the individual particles pack into a single, usually spherical aggresome (1-3 microm) that surrounds the MTOC. Aggresomes are dynamic: they recruit various chaperones and proteasomes, presumably to aid in the disposal of the aggregated proteins. In addition, the formation of an aggresome is likely to activate the autophagic clearance mechanism that terminates in lysosomal degradation. Hence, the aggresome pathway may provide a novel system to deliver aggregated proteins from the cytoplasm to lysosomes for degradation. Although it is clear that many pathological states correlate with the formation of aggresomes, their causal relationships remain hotly debated. Here, we describe the current state of our knowledge of the aggresome pathway and outline the open questions that provide the focus of current research.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources