Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul 19;277(29):26496-500.
doi: 10.1074/jbc.M202133200. Epub 2002 May 14.

Vitamin D(3)-up-regulated protein-1 is a stress-responsive gene that regulates cardiomyocyte viability through interaction with thioredoxin

Affiliations
Free article

Vitamin D(3)-up-regulated protein-1 is a stress-responsive gene that regulates cardiomyocyte viability through interaction with thioredoxin

Yanlin Wang et al. J Biol Chem. .
Free article

Abstract

The protein-disulfide reductase thioredoxin is critical for redox signaling during apoptosis and growth. In this study, we demonstrate that vitamin D(3)-up-regulated protein-1 regulates thioredoxin in conditions of biomechanical or oxidative stress and critically regulates cardiomyocyte viability. Expression of vitamin D(3)-up-regulated protein-1 but not of thioredoxin in rat cardiomyocytes was rapidly suppressed by biomechanical strain or hydrogen peroxide at both mRNA and protein levels. Mechanical suppression of vitamin D(3)-up-regulated protein-1 gene expression was blocked by N-acetylcysteine. The half-life of vitamin D(3)-up-regulated protein-1 transcripts in cardiomyocytes was only 1.1 h and remained unchanged after mechanical stimulation, suggesting that rapid responses in vitamin D(3)-up-regulated protein-1 gene expression occur through transcriptional control. Vitamin D(3)-up-regulated protein-1 down-regulation by strain or hydrogen peroxide led to increased thioredoxin activity, whereas adenovirus-mediated overexpression of vitamin D(3)-up-regulated protein-1 suppressed thioredoxin activity. Overexpression of vitamin D(3)-up-regulated protein-1 but not of thioredoxin induced cardiomyocyte apoptosis. Furthermore, overexpression of vitamin D(3)-up-regulated protein-1 sensitized cells to hydrogen peroxide-induced apoptosis, whereas overexpression of thioredoxin protected against injury. These data identify vitamin D(3)-up-regulated protein-1 as a key stress-responsive inhibitory switch of thioredoxin activity in cardiomyocytes and demonstrate that the vitamin D(3)-up-regulated protein-1/thioredoxin axis has an important role in the preservation of cellular viability.

PubMed Disclaimer

Publication types

LinkOut - more resources