Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar-Apr;39(2):131-47.
doi: 10.1159/000057762.

Nicotinamide modulates mitochondrial membrane potential and cysteine protease activity during cerebral vascular endothelial cell injury

Affiliations

Nicotinamide modulates mitochondrial membrane potential and cysteine protease activity during cerebral vascular endothelial cell injury

Zhao Zhong Chong et al. J Vasc Res. 2002 Mar-Apr.

Abstract

Microvascular endothelial cell (EC) apoptosis or programmed cell death (PCD) during free radical injury may be involved in the development of cerebral ischemic and degenerative diseases. Yet, the cellular mechanisms that mediate cerebral EC injury require further definition. We therefore used the agent nicotinamide as an investigative tool in EC cultures to examine the role of free radical nitric oxide (NO)-induced PCD. EC injury was evaluated by the trypan blue dye exclusion method, DNA fragmentation, membrane phosphatidylserine (PS) exposure, cysteine protease activity, mitochondrial membrane potential, and mitogen-activated protein kinase phosphorylation. We demonstrate that cerebrovascular PCD consists of two distinct pathways that involve the degradation of genomic DNA and the exposure of membrane PS residues. Each of these pathways is reversible in nature and is controlled independently by caspase 8, caspase 1, and caspase 3. As a cytoprotectant, nicotinamide is novel in the vascular system and functions at two levels. Nicotinamide not only maintains the mitochondrial membrane potential and the prevention of cytochrome c release, but also prevents the induction of caspase-8-, caspase-1- and caspase-3-like activities linked to the DNA repair enzyme poly(ADP-ribose) polymerase through mechanisms that are independent from the MAP kinase systems of p38 and JNK. The work begins to identify therapeutic strategies for the protection of the cerebral vasculature during both acute and chronic degenerative disorders.

PubMed Disclaimer

Publication types

MeSH terms