Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Dec 16;14(25):5415-7.
doi: 10.1021/bi00696a005.

Transport of 8-anilino-1-naphthalenesulfonate as a probe of the effect of cholesterol on the phospholipid bilayer structures

Transport of 8-anilino-1-naphthalenesulfonate as a probe of the effect of cholesterol on the phospholipid bilayer structures

T Y Tson-. Biochemistry. .

Abstract

The transport of 8-anilino-1-naphthalenesulfonate in dimyristoyl-L-alpha-lecithin bilayers has been found to be extremely sensitive to the crystalline state of the phospholipid dispersions. Thus this reaction may be used for probing the membrane structures. In binary mixtures of cholesterol and phospholipid the fluorescence enhancement of the dye completely disappears when the mole fraction of cholesterol reaches 33%. At temperatures below and above the phase transition of the lipid bilayers, the rate of the probe transport increases significantly in the binary mixtures. It reaches a maximum at 17 mol % of cholestero. The rate at this cholesterol content approaches the maximum value obtained for the probe transport in pure phospholipis, e.i., the rate at the midpoint of the phase transition. These observations indicate that the effect of cholesterol in the phospholipid dispersion is to maintain the bilayer structure close to the melting temperature of the lipid phase transition. In other words, cholesterol may be an effective buffer for membrane crystalline state when its concentration is near 17 mol %.

PubMed Disclaimer

Similar articles

Cited by

Publication types