Origins of the difference in Ca2+ requirement for activation of mu- and m-calpain
- PMID: 12014988
- PMCID: PMC1222847
- DOI: 10.1042/BJ20020485
Origins of the difference in Ca2+ requirement for activation of mu- and m-calpain
Abstract
The mu- and m-calpains are closely related Ca(2+)-dependent cysteine proteases having different in vitro Ca(2+) requirements ( K (d)), of approx. 25 and 325 microM respectively. The two isoforms are heterodimers of slightly different large (80 kDa) subunits and an identical small (28 kDa) subunit, so that the difference in K (d) values must reside in the large subunits. As assayed here, these K (d) values relate to the Ca(2+) required for the first phase of calpain activation and do not reflect the lower Ca(2+) then required by fully activated calpain. On the basis of sequence comparison and the X-ray structure of m-calpain, many m-type residues in the C-terminal EF-hand-containing domain IV were converted into the corresponding mu-type residues, but these mutations did not produce the expected decrease in K (d). In a series of hybrid (mu/m) large-subunit calpains, the K (d) values decreased progressively towards that of mu-calpain as the proportion of mu-type sequence increased from 0 to 90%. K (d) values cannot therefore be ascribed to one or a few specific intramolecular interactions, but reflect the global response of the whole molecule to Ca(2+) binding. Nonetheless, 25% of the difference in K (d) values between mu- and m-calpain can be ascribed to the N-terminal peptide of the large subunit, whereas the C-terminal EF-hand-containing domain IV accounts for 65% of the difference.
Similar articles
-
Activation of calpain by Ca2+: roles of the large subunit N-terminal and domain III-IV linker peptides.J Mol Biol. 2004 Oct 29;343(4):1049-53. doi: 10.1016/j.jmb.2004.08.073. J Mol Biol. 2004. PMID: 15476820
-
Roles of individual EF-hands in the activation of m-calpain by calcium.Biochem J. 2000 May 15;348 Pt 1(Pt 1):37-43. Biochem J. 2000. PMID: 10794711 Free PMC article.
-
Purification and characterization of calpain and calpastatin from rainbow trout, Oncorhynchus mykiss.Comp Biochem Physiol B Biochem Mol Biol. 2007 Apr;146(4):445-55. doi: 10.1016/j.cbpb.2006.10.110. Epub 2006 Nov 24. Comp Biochem Physiol B Biochem Mol Biol. 2007. PMID: 17276714
-
The calpain system.Physiol Rev. 2003 Jul;83(3):731-801. doi: 10.1152/physrev.00029.2002. Physiol Rev. 2003. PMID: 12843408 Review.
-
Interaction of calpastatin with calpain: a review.Biol Chem. 2004 Jun;385(6):465-72. doi: 10.1515/BC.2004.054. Biol Chem. 2004. PMID: 15255177 Review.
Cited by
-
Calpeptin, not calpain, directly inhibits an ion channel of the inner mitochondrial membrane.Protoplasma. 2016 May;253(3):835-843. doi: 10.1007/s00709-015-0846-x. Epub 2015 Jun 25. Protoplasma. 2016. PMID: 26108743
-
Binding of calcium ions and SNAP-25 to the hexa EF-hand protein secretagogin.Biochem J. 2007 Jan 1;401(1):353-63. doi: 10.1042/BJ20060918. Biochem J. 2007. PMID: 16939418 Free PMC article.
-
Characterization of a new p94-like calpain form in human lymphocytes.Biochem J. 2003 Nov 1;375(Pt 3):689-96. doi: 10.1042/BJ20030706. Biochem J. 2003. PMID: 12882647 Free PMC article.
-
Proteins with calmodulin-like domains: structures and functional roles.Cell Mol Life Sci. 2019 Jun;76(12):2299-2328. doi: 10.1007/s00018-019-03062-z. Epub 2019 Mar 15. Cell Mol Life Sci. 2019. PMID: 30877334 Free PMC article. Review.
-
Ca2+ signaling in airway epithelial cells facilitates leukocyte recruitment and transepithelial migration.J Leukoc Biol. 2009 Nov;86(5):1135-44. doi: 10.1189/jlb.0209072. Epub 2009 Jul 15. J Leukoc Biol. 2009. PMID: 19605699 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous