Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Jun;24(4):211-22.
doi: 10.1016/s0387-7604(02)00056-6.

Genetic abnormalities underlying familial epilepsy syndromes

Affiliations
Review

Genetic abnormalities underlying familial epilepsy syndromes

Shinichi Hirose et al. Brain Dev. 2002 Jun.

Abstract

Genetic defects have been recently identified in certain inherited epilepsy syndromes in which the phenotypes are similar to common idiopathic epilepsies. Mutations in the neuronal nicotinic acetylcholine receptor 4 and 2 subunit genes have been detected in families with autosomal dominant nocturnal frontal lobe epilepsy. Both receptors are components of neuronal acetylcholine receptor, a ligand-gated ion channel in the brain. Furthermore, mutations of two K+-channel genes were also identified as the underlying genetic abnormalities of benign familial neonatal convulsions. Mutations in the voltage-gated Na+-channel 1, 2 and 1 and the gamma aminobutyric acid (GABAA) receptor 2 subunit genes were found as a cause of generalized epilepsy with febrile seizures plus, a clinical subset of febrile convulsions. Na+-channels, GABAA receptor and their auxiliaries may be involved in the pathogenesis of this subtype and even in simple febrile convulsions. Mutation of a voltage-gated K+-channel gene can cause partial seizures associated with periodic ataxia type 1 and some forms of juvenile myoclonic epilepsy and idiopathic generalized epilepsy can result from mutations of a Ca2+-channel. This line of evidence suggests the involvement of channels expressed in the brain in the pathogenesis of certain types of epilepsy. Our working hypothesis is to view certain idiopathic epilepsies as disorders of ion channels, i.e. 'channelopathies'. Such hypothesis should provide a new insight to our understanding of the genetic background of epilepsy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources