Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002;32(7):459-76.
doi: 10.2165/00007256-200232070-00005.

Skeletal adaptations to alterations in weight-bearing activity: a comparison of models of disuse osteoporosis

Affiliations
Review

Skeletal adaptations to alterations in weight-bearing activity: a comparison of models of disuse osteoporosis

Lora Giangregorio et al. Sports Med. 2002.

Abstract

The removal of regular weight-bearing activity generates a skeletal adaptive response in both humans and animals, resulting in a loss of bone mineral. Human models of disuse osteoporosis, namely bed rest, spinal cord injury and exposure to micro-gravity demonstrate the negative calcium balance, alterations in biochemical markers of bone turnover and resultant loss of bone mineral in the lower limbs that occurs with reduced weight-bearing loading. The site-specific nature of the bone response is consistent in all models of disuse; however, the magnitude of the skeletal adaptive response may differ across models. It is important to understand the various manifestations of disuse osteoporosis, particularly when extrapolating knowledge gained from research using one model and applying it to another. In rats, hindlimb unloading and exposure to micro-gravity also result in a significant bone response. Bone mineral is lost, and changes in calcium metabolism and biochemical markers of bone turnover similar to humans are noted. Restoration of bone mineral that has been lost because of a period of reduced weight bearing may be restored upon return to normal activity; however, the recovery may not be complete and/or may take longer than the time course of the original bone loss. Fluid shear stress and altered cytokine activity may be mechanistic features of disuse osteoporosis. Current literature for the most common human and animal models of disuse osteoporosis has been reviewed, and the bone responses across models compared.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Bone. 1997 Nov;21(5):419-23 - PubMed
    1. Bone. 1998 May;22(5 Suppl):83S-88S - PubMed
    1. J Clin Endocrinol Metab. 1998 Feb;83(2):415-22 - PubMed
    1. Bone. 1996 Jul;19(1):61-8 - PubMed
    1. Paraplegia. 1992 Mar;30(3):204-9 - PubMed

LinkOut - more resources