Predicting the beta-helix fold from protein sequence data
- PMID: 12015881
- DOI: 10.1089/10665270252935458
Predicting the beta-helix fold from protein sequence data
Abstract
A method is presented that uses beta-strand interactions to predict the parallel right-handed beta-helix super-secondary structural motif in protein sequences. A program called BetaWrap implements this method and is shown to score known beta-helices above non-beta-helices in the Protein Data Bank in cross-validation. It is demonstrated that BetaWrap learns each of the seven known SCOP beta-helix families, when trained primarily on beta-structures that are not beta-helices, together with structural features of known beta-helices from outside the family. BetaWrap also predicts many bacterial proteins of unknown structure to be beta-helices; in particular, these proteins serve as virulence factors, adhesins, and toxins in bacterial pathogenesis and include cell surface proteins from Chlamydia and the intestinal bacterium Helicobacter pylori. The computational method used here may generalize to other beta-structures for which strand topology and profiles of residue accessibility are well conserved.
Similar articles
-
Wrap-and-Pack: a new paradigm for beta structural motif recognition with application to recognizing beta trefoils.J Comput Biol. 2005 Jul-Aug;12(6):777-95. doi: 10.1089/cmb.2005.12.777. J Comput Biol. 2005. PMID: 16108716
-
BETAWRAP: successful prediction of parallel beta -helices from primary sequence reveals an association with many microbial pathogens.Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):14819-24. doi: 10.1073/pnas.251267298. Proc Natl Acad Sci U S A. 2001. PMID: 11752429 Free PMC article.
-
Protein fold recognition using segmentation conditional random fields (SCRFs).J Comput Biol. 2006 Mar;13(2):394-406. doi: 10.1089/cmb.2006.13.394. J Comput Biol. 2006. PMID: 16597248
-
Comparing genomes in terms of protein structure: surveys of a finite parts list.FEMS Microbiol Rev. 1998 Oct;22(4):277-304. doi: 10.1111/j.1574-6976.1998.tb00371.x. FEMS Microbiol Rev. 1998. PMID: 10357579 Review.
-
Unification of protein families.Curr Opin Struct Biol. 1998 Jun;8(3):372-9. doi: 10.1016/s0959-440x(98)80072-9. Curr Opin Struct Biol. 1998. PMID: 9666334 Review.
Cited by
-
Non-steric-zipper models for pathogenic α-synuclein conformers.APL Bioeng. 2018 May 1;2(2):026105. doi: 10.1063/1.5023460. eCollection 2018 Jun. APL Bioeng. 2018. PMID: 31069302 Free PMC article.
-
Genome-Wide Prediction of Vaccine Candidates for Leishmania major: An Integrated Approach.J Trop Med. 2015;2015:709216. doi: 10.1155/2015/709216. Epub 2015 Nov 23. J Trop Med. 2015. PMID: 26681959 Free PMC article.
-
In Silico Characterization and Structural Modeling of Dermacentor andersoni p36 Immunosuppressive Protein.Adv Bioinformatics. 2018 Apr 8;2018:7963401. doi: 10.1155/2018/7963401. eCollection 2018. Adv Bioinformatics. 2018. PMID: 29849611 Free PMC article.
-
Dynactin function in mitotic spindle positioning.Traffic. 2008 Apr;9(4):510-27. doi: 10.1111/j.1600-0854.2008.00710.x. Epub 2008 Jan 22. Traffic. 2008. PMID: 18221362 Free PMC article.
-
Comprehensive in silico prediction and analysis of chlamydial outer membrane proteins reflects evolution and life style of the Chlamydiae.BMC Genomics. 2009 Dec 29;10:634. doi: 10.1186/1471-2164-10-634. BMC Genomics. 2009. PMID: 20040079 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources