Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Dec 10;164(3):371-85.
doi: 10.1007/BF00223015.

A scanning electron microscopic study of the rat liver sinusoid: endothelial and Kupffer cells

A scanning electron microscopic study of the rat liver sinusoid: endothelial and Kupffer cells

P Motta. Cell Tissue Res. .

Abstract

The surface ultrastructure of Kupffer cells in the rat liver has been studied by scanning electron microscopy (SEM). The results demonstrate that Kupffer cells are both significantly different and clearly distinct from endothelial cells. Kupffer cells have neither pores (and/or "sieve plates") nor fenestrations, all of which are present in endothelial cells. They possess a stellate shape, and only indirectly, with slender and irregular evaginations, contribute to the lining of the sinusoidal wall. Furthermore, the luminal surface in some areas contains a large population of short microvilli, microphicae and invaginations. These elements form a kind of microlabyrinth which may correpond to the "worm-like" structures described by transmission electron microscopy (TEM). In the present study, transition forms between endothelial and Kupffer cells were never found. On the contrary, considering the highly fenestrated nature of the endothelial cells, the Kupffer cells may, by ameboid movements, easily cross the overlapping barrier of the sinusoid and protrude into the lumen. Thus, acting as activated macrophages, the Kupffer cells might function to prevent the entrance of foreign material into the tissues of the liver through the fragile and highly fenestrated endothelium. Finally, the topographical reconstruction of the sinusoid by correlated SEM and TEM studies demonstrates the Kupffer cells, with their protruding cytoplasm and ability to extend into the lumen of the sinusoid, may actually change the caliber of the vessel, and thus function as a "sphincter" which causes a temporary arrest of the blood flow when the diameter of the sinusoidal lumen is reduced.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Biophys Biochem Cytol. 1961 Feb;9:409-14 - PubMed
    1. Z Zellforsch Mikrosk Anat. 1972;133(2):147-62 - PubMed
    1. Z Zellforsch Mikrosk Anat. 1961;54:252-61 - PubMed
    1. Lab Invest. 1973 Jul;29(1):60-4 - PubMed
    1. J Ultrastruct Res. 1972 Mar;38(5):528-62 - PubMed