Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Jun;21(2):137-45.
doi: 10.1007/s003440010052. Epub 2002 May 24.

Actomyosin-mediated statolith positioning in gravisensing plant cells studied in microgravity

Affiliations
Comparative Study

Actomyosin-mediated statolith positioning in gravisensing plant cells studied in microgravity

Markus Braun et al. J Plant Growth Regul. 2002 Jun.

Abstract

The positioning and gravity-induced sedimentation of statoliths is crucial for gravisensing in most higher and lower plants. In positively gravitropic rhizoids and, for the first time, in negatively gravitropic protonemata of characean green algae, statolith positioning by actomyosin forces was investigated in microgravity (<10(-4) g) during parabolic flights of rockets (TEXUS/MAXUS) and during the Space-Shuttle flight STS 65. In both cell types, the natural position of statoliths is the result of actomyosin forces which compensate the statoliths' weight in this position. When this balance of forces was disturbed in microgravity or on the fast-rotating clinostat (FRC), a basipetal displacement of the statoliths was observed in rhizoids. After several hours in microgravity, the statoliths were loosely arranged over an area whose apical border was in the same range as in 1 g, whereas the basal border had increased its distance from the tip. In protonemata, the actomyosin forces act net-acropetally. Thus, statoliths were transported towards the tip when protonemata were exposed to microgravity or rotated on the FRC. In preinverted protonemata, statoliths were transported away from the tip to a dynamically stable resting position. Experiments in microgravity and on the FRC gave similar results and allowed us to distinguish between active and passive forces acting on statoliths. The results indicate that actomyosin forces act differently on statoliths in the different regions of both cell types in order to keep the statoliths in a position where they function as susceptors and initiate gravitropic reorientation, even in cells that had never experienced gravity during their growth and development.

PubMed Disclaimer

Similar articles

Cited by

Publication types