Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Spring:98-100:327-40.
doi: 10.1385/abab:98-100:1-9:327.

Reduction of furfural to furfuryl alcohol by ethanologenic strains of bacteria and its effect on ethanol production from xylose

Affiliations
Comparative Study

Reduction of furfural to furfuryl alcohol by ethanologenic strains of bacteria and its effect on ethanol production from xylose

Tony Gutiérrez et al. Appl Biochem Biotechnol. 2002 Spring.

Abstract

The ethanologenic bacteria Escherichia coli strains KO11 and LYO1, and Klebsiella oxytoca strain P2, were investigated for their ability to metabolize furfural. Using high performance liquid chromatography and 13C-nuclear magnetic resonance spectroscopy, furfural was found to be completely biotransformed into furfuryl alcohol by each of the three strains with tryptone and yeast extract as sole carbon sources. This reduction appears to be constitutive with NAD(P)H acting as electron donor. Glucose was shown to be an effective source of reducing power. Succinate inhibited furfural reduction, indicating that flavins are unlikely participants in this process. Furfural at concentrations >10 mM decreased the rate of ethanol formation but did not affect the final yield. Insight into the biochemical nature of this furfural reduction process may help efforts to mitigate furfural toxicity during ethanol production by ethanologenic bacteria.

PubMed Disclaimer

Publication types

LinkOut - more resources