Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Aug-Sep;41(2-3):95-102.
doi: 10.1016/s0197-0186(02)00029-3.

Molecular mechanism of acute ammonia toxicity: role of NMDA receptors

Affiliations
Review

Molecular mechanism of acute ammonia toxicity: role of NMDA receptors

Pilar Monfort et al. Neurochem Int. 2002 Aug-Sep.

Abstract

Acute administration of large doses of ammonia leads to the rapid death of animals. This article reviews the role of excessive activation of N-methyl-D-aspartate (NMDA) receptors in the mediation of ammonia-induced mortality. The studies reviewed here show that acute intoxication with large doses of ammonia leads to the activation of NMDA receptors in brain in vivo. Moreover, excessive activation of NMDA receptors is responsible for ammonia-induced death of animals, which is prevented by different antagonists of NMDA receptors. This article also reviews the studies showing that activation of NMDA receptors is also responsible for the following effects of acute ammonia intoxication: (1) depletion of brain ATP, which, in turn, leads to release of glutamate; (2) activation of calcineurin and dephosphorylation and activation of Na+/K+-ATPase in brain, thus increasing ATP consumption; (3) impairment of mitochondrial function and calcium homeostasis at different levels, thus decreasing ATP synthesis; (4) activation of calpain that degrades the microtubule-associated protein MAP-2, thus altering the microtubular network; (5) increased formation of nitric oxide (NO) formation, which, in turn, reduces the activity of glutamine synthetase, thus reducing the elimination of ammonia in brain.

PubMed Disclaimer

Publication types

LinkOut - more resources