Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jun;144(3):351-64.
doi: 10.1007/s00221-002-1060-6. Epub 2002 Apr 13.

The use of overlapping submovements in the control of rapid hand movements

Affiliations

The use of overlapping submovements in the control of rapid hand movements

K E Novak et al. Exp Brain Res. 2002 Jun.

Abstract

Rapid targeted movements are subject to special control considerations, since there may be inadequate time available for either visual or somatosensory feedback to be effective. In our experiments, subjects rapidly rotated a knob to align a pointer to one of several targets. We recognized three different types of movement segments: the primary movement, and two types of submovement, which frequently followed. The submovements were initiated either before or after the end of the primary movement. The former, or "overlapping" type of submovement altered the kinematics of the overall movement and was consequently difficult to detect. We used a direct, objective test of movement regularity to detect overlapping submovements, namely, examining the number of jerk and snap zero crossings during the second half of a movement. Any overlapping submovements were parsed from the overall movement by subtracting the velocity profile of the primary movement. The velocity profiles of the extracted submovements had near-symmetric bell shapes, similar to the shapes of both pure primary movements and nonoverlapping submovements. This suggests that the same neural control mechanisms may be responsible for producing all three types of movement segments. Overlapping submovements corrected for errors in the amplitude of the primary movement. Furthermore, they may account for the previously observed, speed-dependent asymmetry of the velocity profile. We used a nonlinear model of the musculoskeletal system to explain most of the kinematic features of these rapid hand movements, including how discrete submovements are superimposed on a primary movement. Finally, we present a plausible scheme for how the central nervous system may generate the commands to control these rapid hand movements.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources