A methodology to explain neural network classification
- PMID: 12022511
- DOI: 10.1016/s0893-6080(01)00127-7
A methodology to explain neural network classification
Abstract
Neural networks are still frustrating tools in the data mining arsenal. They exhibit excellent modelling performance, but do not give a clue about the structure of their models. We propose a methodology to explain the classification obtained by a multilayer perceptron. We introduce the concept of 'causal importance' and define a saliency measurement allowing the selection of relevant variables. Once the model is trained with the relevant variables only, we define a clustering of the data built from the hidden layer representation. Combining the saliency and the causal importance on a cluster by cluster basis allows an interpretation of the neural network classifier to be built. We illustrate the performances of this methodology on three benchmark datasets.
Similar articles
-
Generalized classifier neural network.Neural Netw. 2013 Mar;39:18-26. doi: 10.1016/j.neunet.2012.12.001. Epub 2012 Dec 25. Neural Netw. 2013. PMID: 23298551
-
A generalized feedforward neural network architecture for classification and regression.Neural Netw. 2003 Jun-Jul;16(5-6):561-8. doi: 10.1016/S0893-6080(03)00116-3. Neural Netw. 2003. PMID: 12850008
-
Design of double fuzzy clustering-driven context neural networks.Neural Netw. 2018 Aug;104:1-14. doi: 10.1016/j.neunet.2018.03.018. Epub 2018 Apr 9. Neural Netw. 2018. PMID: 29689457
-
Artificial neural networks for species identification by taxonomists.Biosystems. 2003 Nov;72(1-2):131-47. doi: 10.1016/s0303-2647(03)00139-4. Biosystems. 2003. PMID: 14642663
-
Comparison of multilayer neural network and Nearest Neighbor Classifiers for handwritten digit recognition.Int J Neural Syst. 1995 Dec;6(4):417-23. doi: 10.1142/s0129065795000275. Int J Neural Syst. 1995. PMID: 8963470 Review.
Cited by
-
Conditional variable importance for random forests.BMC Bioinformatics. 2008 Jul 11;9:307. doi: 10.1186/1471-2105-9-307. BMC Bioinformatics. 2008. PMID: 18620558 Free PMC article.
-
Characterization of hidden rules linking symptoms and selection of acupoint using an artificial neural network model.Front Med. 2019 Feb;13(1):112-120. doi: 10.1007/s11684-017-0582-z. Epub 2018 Apr 12. Front Med. 2019. PMID: 29651775
-
Perceptron Theory Can Predict the Accuracy of Neural Networks.IEEE Trans Neural Netw Learn Syst. 2024 Jul;35(7):9885-9899. doi: 10.1109/TNNLS.2023.3237381. Epub 2024 Jul 10. IEEE Trans Neural Netw Learn Syst. 2024. PMID: 37022402 Free PMC article.
-
Hybrid artificial neural network and structural equation modelling techniques: a survey.Complex Intell Systems. 2022;8(2):1781-1801. doi: 10.1007/s40747-021-00503-w. Epub 2021 Aug 28. Complex Intell Systems. 2022. PMID: 34777975 Free PMC article.
-
Feature relevance XAI in anomaly detection: Reviewing approaches and challenges.Front Artif Intell. 2023 Feb 8;6:1099521. doi: 10.3389/frai.2023.1099521. eCollection 2023. Front Artif Intell. 2023. PMID: 36844426 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources