Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jun 1;53(2):475-82.
doi: 10.1016/s0360-3016(01)02822-x.

The effectiveness of breath-holding to stabilize lung and pancreas tumors during radiosurgery

Affiliations

The effectiveness of breath-holding to stabilize lung and pancreas tumors during radiosurgery

Martin J Murphy et al. Int J Radiat Oncol Biol Phys. .

Abstract

Purpose: To evaluate the effect of breath-holding on the short-term reproducibility and long-term variability of tumor position during image-guided radiosurgery.

Method: Thirteen patients have undergone single-fraction radiosurgery treatments during which the tumor was repeatedly imaged radiographically to observe its position. The imaging data were used to monitor the efficacy of breath-holding and to periodically readjust the alignment of the treatment beam with the tumor. These measurements have allowed the effects of breathing, heartbeat, patient movement, and instrumental uncertainties to be separately identified in the record of tumor position.

Results: During inspiration breath-holding, the lung tumor position was reproducible to within 1 mm, on average, in the direction of maximum displacement during regular breathing, and to within 1.8 mm in three dimensions overall. The pancreas tumor position in three dimensions was reproducible to within 2.5 mm on average. Some patients showed a slow, steady drift of tumor position during the extended sequence of breath-holds, which was compensated by periodic retargeting of the treatment beam.

Conclusion: Breath-holding can allow the reduction of tumor motion dosimetry margins to 2 mm or less for lung cancer treatments, provided that the treatment system can detect and adapt to long-term variations in the mean tumor position during a lengthy treatment fraction.

PubMed Disclaimer

LinkOut - more resources