Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul 26;277(30):27162-8.
doi: 10.1074/jbc.M204688200. Epub 2002 May 21.

Conversion of phosphoglycolate to phosphate termini on 3' overhangs of DNA double strand breaks by the human tyrosyl-DNA phosphodiesterase hTdp1

Affiliations
Free article

Conversion of phosphoglycolate to phosphate termini on 3' overhangs of DNA double strand breaks by the human tyrosyl-DNA phosphodiesterase hTdp1

Kedar V Inamdar et al. J Biol Chem. .
Free article

Abstract

Mammalian cells contain potent activity for removal of 3'-phosphoglycolates from single-stranded oligomers and from 3' overhangs of DNA double strand breaks, but no specific enzyme has been implicated in such removal. Fractionated human whole-cell extracts contained an activity, which in the presence of EDTA, catalyzed removal of glycolate from phosphoglycolate at a single-stranded 3' terminus to leave a 3'-phosphate, reminiscent of the human tyrosyl-DNA phosphodiesterase hTdp1. Recombinant hTdp1, as well as Saccharomyces cerevisiae Tdp1, catalyzed similar removal of glycolate, although less efficiently than removal of tyrosine. Moreover, glycolate-removing activity could be immunodepleted from the fractionated extracts by antiserum to hTdp1. When a plasmid containing a double strand break with a 3'-phosphoglycolate on a 3-base 3' overhang was incubated in human cell extracts, phosphoglycolate processing proceeded rapidly for the first few minutes but then slowed dramatically, suggesting that the single-stranded overhangs gradually became sequestered and inaccessible to hTdp1. The results suggest a role for hTdp1 in repair of free radical-mediated DNA double strand breaks bearing terminally blocked 3' overhangs.

PubMed Disclaimer

Publication types