Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jun;8(6):631-3.
doi: 10.3201/eid0806.010368.

Three drinking-water-associated cryptosporidiosis outbreaks, Northern Ireland

Affiliations

Three drinking-water-associated cryptosporidiosis outbreaks, Northern Ireland

Scott Glaberman et al. Emerg Infect Dis. 2002 Jun.

Abstract

Three recent drinking-water-associated cryptosporidiosis outbreaks in Northern Ireland were investigated by using genotyping and subgenotyping tools. One Cryptosporidium parvum outbreak was caused by the bovine genotype, and two were caused by the human genotype. Subgenotyping analyses indicate that two predominant subgenotypes were associated with these outbreaks and had been circulating in the community.

PubMed Disclaimer

Figures

Figure
Figure
Genetic relationship among Cryptosporidium parasites found in three Northern Ireland outbreaks (outbreaks A, B, and C), sporadic cases in west Ireland (S1 to S14) and the northwest of England (S15 to S24), subgenotypes described by Strong et al. , and an unpublished sequence (AF203016) from the GenBank database. The isolates with accession numbers were mostly human and bovine and from the United States with the exception of AF164488, AF164492, and AF164493, which were isolated from humans in Zaire, Peru, and Brazil, respectively, but had been passaged in calves in the United States. Nomenclature for groups of subgenotypes is adapted from Strong et al.: Ia, Ib, Ic, and Id for subgenotypes of the C. parvum human genotype and II for subgenotypes of the C. parvum bovine genotype . Data presented are a neighbor-joining tree of GP60 sequences.

References

    1. Peng MM, Xiao L, Freeman AR, Arrowood MJ, Escalante AA, Weltman AC, et al. Genetic polymorphism among Cryptosporidium parvum isolates: evidence of two distinct human transmission cycles. Emerg Infect Dis. 1997;3:567–73. - PMC - PubMed
    1. McLauchlin J, Amar C, Pedraza-Diaz S, Nichols GL. Molecular epidemiological analysis of Cryptosporidium spp. in the United Kingdom: results of genotyping Cryptosporidium spp. in 1,705 fecal samples from humans and 105 fecal samples from livestock animals. J Clin Microbiol. 2000;38:3984–90. - PMC - PubMed
    1. Sulaiman IM, Lal AA, Xiao L. A population genetic study of the Cryptosporidium parvum human genotype parasites. J Eukaryot Microbiol. 2001. In press. - PubMed
    1. Peng MM, Matos O, Gatei W, Das P, Stantic-Pavlinic M, Bern C, et al. A comparison of Cryptosporidium subgenotypes from several geographic regions. J Eukaryot Microbiol. 2001. In press. - PubMed
    1. Sulaiman I, Xiao L, Yang C, Escalante L, Moore A, Beard CB, et al. Differentiating human from animal isolates of Cryptosporidium parvum. Emerg Infect Dis. 1998;4:681–5. - PMC - PubMed

Publication types

MeSH terms