Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Oct;42(3):372-382.
doi: 10.1007/s00248-001-0009-9.

Bacterioplankton Production in Lakes along an Altitude Gradient in the Subarctic North of Sweden

Affiliations

Bacterioplankton Production in Lakes along an Altitude Gradient in the Subarctic North of Sweden

J. Karlsson et al. Microb Ecol. 2001 Oct.

Abstract

We examined changes in bacterioplankton standing stock and production in subarctic lakes in the north of Sweden to elucidate their coupling to lake physical, chemical, and biological characteristics. Sixteen lakes situated along an altitude gradient extending from the coniferous forest to the high-alpine belt were studied during 1998 and 1999. The summer mean bacterial numbers and production varied substantially between the lakes, with a general trend toward decreasing values with increasing altitude. The results demonstrate that P probably restricted bacterial utilization of DOC in the coniferous forest lakes, while low DOC concentrations limited bacterial growth during the summer in the alpine lakes. The primary production of plankton was insufficient to support bacterial production in the lakes. High input of allochthonous DOC to the alpine lakes in spring was sufficient both to increase the bacterial production and to induce P-limitation. As a consequence, there was a tendency toward higher bacterial activity in the spring compared to the summer in the alpine lakes. The results indicate that most of the bacterial standing stock and production are supported by allochthonous DOC plus DOC from benthic production, and more or less limited by the phosphorus supply. We therefore suggest that bacteria populations in subarctic lakes may be indirectly affected by climate variations through its impact on the input of DOC and nutrients from the lake catchments.

PubMed Disclaimer

LinkOut - more resources