Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 May-Jun;31(3):745-51.
doi: 10.2134/jeq2002.7450.

Sorption of iron-cyanide complexes on goethite in the presence of sulfate and desorption with phosphate and chloride

Affiliations

Sorption of iron-cyanide complexes on goethite in the presence of sulfate and desorption with phosphate and chloride

Thilo Rennert et al. J Environ Qual. 2002 May-Jun.

Abstract

Soils are contaminated with potentially toxic iron-cyanide complexes by some industrial activities. The influence of sulfate on the sorption of the iron-cyanide complexes ferricyanide, [Fe(CN)6]3-, and ferrocyanide, [Fe(CN)6]4-, on goethite was investigated in batch experiments. The experiments were conducted as influenced by pH and varying sulfate/iron-cyanide complex concentration ratios. Furthermore, the desorption of iron-cyanide complexes sorbed on goethite was studied using phosphate and chloride solutions as influenced by pH and anion concentration. Over the whole pH range (pH 3.5 to 8), ferricyanide and sulfate showed similar affinities for the goethite surface. The extent of ferricyanide sorption strongly depended on sulfate concentrations and vice versa. In contrast, ferrocyanide sorption was only decreased (approximately 12%) by sulfate additions at pH 3.5. Ferricyanide was completely desorbed by 1 M chloride, ferrocyanide not at all. Unbuffered phosphate solutions (pH 8.3) desorbed both iron-cyanide complexes completely. Even in 70-fold excess, pH-adjusted phosphate solutions could not desorb ferrocyanide completely at pH 3.5. For ferricyanide we propose a sorption mechanism that is similar to the sulfate sorption mechanism, including outer-sphere and weak inner-sphere surface complexes on goethite. Ferrocyanide appears to form inner-sphere surface complexes. Additionally, we assume that ferrocyanide precipitates probably as a Berlin Blue-like phase at pH 3.5. Hence, ferrocyanide should be less mobile in the soil environment than ferricyanide or sulfate.

PubMed Disclaimer

Publication types

LinkOut - more resources