Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Mar-Apr:15 Suppl 5:S3-21.

The Na+/H+ exchanger gene family

Affiliations
  • PMID: 12027219
Review

The Na+/H+ exchanger gene family

Gerhard Burckhardt et al. J Nephrol. 2002 Mar-Apr.

Abstract

Na+/H+ exchangers (NHEs) extrude protons from, and take up sodium ions into cells. Six isoforms, NHE-1 - NHE-6, have been cloned. NHE proteins are composed of an N-terminal domain, which most likely crosses the cell membrane 12 times and constitutes the cation exchange machinery, and a C-terminal tail, which modulates the exchanger by interacting with protein kinases and regulatory factors. The "house-keeping" NHE-1 is located at the basolateral membrane of most renal tubule cells; NHE-2 is located apically in selected nephron segments. As suggested from data with NHE-1 and NHE-2 deficient mice, both isoforms play a minor role in renal salt and water handling. NHE-3 is located at the apical membrane of proximal tubule and thick ascending limb cells, is involved in Na+ absorption, and is responsible for the majority of bicarbonate absorption. NHE-3 is modulated by the NHE regulating factor, which interacts with further proteins, protein kinases, and the cytoskeleton. Downregulation of NHE-3 by parathyroid hormone, dopamine, and by an increase in blood pressure leads to saluresis/diuresis. The failure of dopamine to downregulate NHE-3 may cause hypertension through renal salt and water retention. NHE-3 knockouts are hypotonic and can not survive on low salt diet. In chronic acidosis, NHE-3 is upregulated possibly through increased local endothelin production. NHE4 has been found mostly in renal medulla. The precise function of this isoform, which is activated by hypertonicity and can perform K+/H+ exchange, is not clear. The segmental location and function of NHE-5 and NHE-6 in the kidney are unknown at present.

PubMed Disclaimer

LinkOut - more resources