Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Jun 7;1576(1-2):92-100.
doi: 10.1016/s0167-4781(02)00298-1.

Leucine zipper-containing WRKY proteins widen the spectrum of immediate early elicitor-induced WRKY transcription factors in parsley

Affiliations
Comparative Study

Leucine zipper-containing WRKY proteins widen the spectrum of immediate early elicitor-induced WRKY transcription factors in parsley

Robert S Cormack et al. Biochim Biophys Acta. .

Abstract

Two new WRKY transcription factors from parsley (Petroselinum crispum), WRKY4 and WRKY5, were isolated using the yeast one-hybrid system. In yeast, both proteins interacted sequence-specifically with W boxes (TTGACC) and activated transcription. They appear to contain functional leucine zippers, which increase their affinities for W boxes. Co-transfection experiments in parsley protoplasts confirmed their in vivo-binding specificity for W boxes. Elicitor-mediated expression of the WRKY5 gene, the first parsley member of the group III family of WRKY proteins, is extremely transient, with high mRNA levels occurring within a time window of less than 1 h. WRKY4 and -5, as well as the previously identified parsley transcription factors WRKY1 and -3, are encoded by immediate early elicitor-activated genes that differ in their sensitivity to cycloheximide (CHX) and their activation kinetics. We propose that a number of the pathways activated during the plant defense response require the induction of several distinct WRKY transcription factors with different DNA binding-site preferences to fine-tune the activation of a wide spectrum of target genes.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources