Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 May 13;21(21):3368-76.
doi: 10.1038/sj.onc.1205326.

Transcriptional regulation of erythropoiesis: an affair involving multiple partners

Affiliations
Review

Transcriptional regulation of erythropoiesis: an affair involving multiple partners

Alan B Cantor et al. Oncogene. .

Abstract

Previous work has demonstrated that lineage-specific transcription factors play essential roles in red blood cell development. More recent studies have shown that these factors participate in critical protein-protein interactions in addition to binding DNA. The zinc finger transcription factor GATA-1, a central mediator of erythroid gene expression, interacts with multiple proteins including FOG-1, EKLF, SP1, CBP/p300 and PU.1. The mechanisms by which these interactions influence GATA-1 function, as well as any possible relationships between these seemingly disparate complexes, remain incompletely understood. However, several new findings have provided further insight into the functional significance of some of these interactions. Studies involving point mutants of GATA-1 have shown that a direct physical interaction between GATA-1 and FOG-1 is essential for normal human erythroid and megakaryocyte maturation in vivo. In addition, evidence has emerged that physical interaction between GATA-1 and the myeloid/lymphoid specific factor PU.1, an oncogene implicated in murine erythroleukemia, acts to functionally cross-antagonize one another. This provides a possible mechanism by which dysregulated expression of hematopoietic transcription factors leads to lineage maturation arrest in leukemias.

PubMed Disclaimer

Publication types

LinkOut - more resources