Differential regulation of HIV-1 clade-specific B, C, and E long terminal repeats by NF-kappaB and the Tat transactivator
- PMID: 12036319
- DOI: 10.1006/viro.2001.1397
Differential regulation of HIV-1 clade-specific B, C, and E long terminal repeats by NF-kappaB and the Tat transactivator
Abstract
The major group of human immunodeficiency viruses (HIV-1) that comprise the current global pandemic have diversified during their worldwide spread and may be divided into at least 10 distinct subtypes or clades, A through J. Subtype B predominates in North America and Europe, subtype E predominates in Southeast Asia, and subtype C predominates in sub-Saharan Africa. Functional distinctions in long terminal repeat (LTR) architecture among HIV subtypes have been identified, thus raising the possibility that regulatory divergence among the subtypes of HIV-1 has occurred. In addition to the transcriptional specificity of the HIV-1 LTR, productive HIV-1 replication is also dependent upon the viral Tat protein. Therefore, we sought to investigate whether interactions between host signaling pathways and the NF-kappaB regions of different HIV-1 subtypes, together with subtype-specific interactions between Tat, TAR, and cellular proteins, modulate the efficiency of HIV-1 clade-specific gene transcription. We demonstrate that the NF-kappaB sites of subtypes B and E both bind NF-kappaB-related complexes. However, the duplicated kappaB sites of the C subtype do not compete for NF-kappaB binding. Also, clade E Tat protein possesses the highest transactivation capacity, regardless of the LTR context. Furthermore, preliminary evidence suggests that the acetylation of subtype-specific Tat proteins may correlate with their transactivation efficiency.
Similar articles
-
Regulation of human immunodeficiency virus type 1 gene expression by clade-specific Tat proteins.J Virol. 2005 Jul;79(14):9180-91. doi: 10.1128/JVI.79.14.9180-9191.2005. J Virol. 2005. PMID: 15994812 Free PMC article.
-
Analysis of the HIV-1 LTR NF-kappaB-proximal Sp site III: evidence for cell type-specific gene regulation and viral replication.Virology. 2000 Sep 1;274(2):262-77. doi: 10.1006/viro.2000.0476. Virology. 2000. PMID: 10964770
-
Drastic decrease of transcription activity due to hypermutated long terminal repeat (LTR) region in different HIV-1 subtypes and recombinants.Antiviral Res. 2010 Nov;88(2):152-9. doi: 10.1016/j.antiviral.2010.08.007. Epub 2010 Aug 14. Antiviral Res. 2010. PMID: 20713090
-
Multiple modes of transcriptional regulation by the HIV-1 Tat transactivator.IUBMB Life. 2001 Mar;51(3):175-81. doi: 10.1080/152165401753544241. IUBMB Life. 2001. PMID: 11547919 Review.
-
Recent status of HIV-1 gene expression inhibitors.Antiviral Res. 2006 Sep;71(2-3):301-6. doi: 10.1016/j.antiviral.2006.01.002. Epub 2006 Feb 3. Antiviral Res. 2006. PMID: 16488488 Review.
Cited by
-
Combinatorial latency reactivation for HIV-1 subtypes and variants.J Virol. 2010 Jun;84(12):5958-74. doi: 10.1128/JVI.00161-10. Epub 2010 Mar 31. J Virol. 2010. PMID: 20357084 Free PMC article.
-
Comparing the ex vivo fitness of CCR5-tropic human immunodeficiency virus type 1 isolates of subtypes B and C.J Virol. 2003 Jan;77(2):1021-38. doi: 10.1128/jvi.77.2.1021-1038.2003. J Virol. 2003. PMID: 12502818 Free PMC article.
-
Use of ATP analogs to inhibit HIV-1 transcription.Virology. 2012 Oct 10;432(1):219-31. doi: 10.1016/j.virol.2012.06.007. Epub 2012 Jul 6. Virology. 2012. PMID: 22771113 Free PMC article.
-
MicroRNAs and exosomes: key players in HIV pathogenesis.HIV Med. 2020 Apr;21(4):246-278. doi: 10.1111/hiv.12822. Epub 2019 Nov 22. HIV Med. 2020. PMID: 31756034 Free PMC article. Review.
-
Association between different anti-Tat antibody isotypes and HIV disease progression: data from an African cohort.BMC Infect Dis. 2016 Jul 22;16:344. doi: 10.1186/s12879-016-1647-3. BMC Infect Dis. 2016. PMID: 27450538 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources