Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Jun;54(2):203-17.
doi: 10.1124/pr.54.2.203.

International Union of Pharmacology. XXVIII. Proteinase-activated receptors

Affiliations
Review

International Union of Pharmacology. XXVIII. Proteinase-activated receptors

Morley D Hollenberg et al. Pharmacol Rev. 2002 Jun.

Abstract

Proteinase-activated receptors (PARs) represent a unique subclass of G-protein-coupled receptors of which four family members have now been cloned from a number of species. The novel mechanism of receptor activation involves the proteolytic unmasking of a cryptic N-terminal receptor sequence that, remaining tethered, binds to and triggers receptor function. In addition, short (five to six amino acids) synthetic peptides, based on the proteolytically revealed motif, can activate PARs without the unmasking of the tethered ligand. This article summarizes the experiments leading to the pharmacological characterization and cloning of the four PAR family members and provides a rationale for their designation by the acronym "PAR". The ability to distinguish among the PARs pharmacologically 1) with selective proteinase activators, 2) with receptor-selective peptide agonists, and 3) with peptide and nonpeptide antagonists is discussed, as are the molecular mechanisms of receptor activation and desensitization/internalization. Finally, the potential physiological roles of the PARs, which are widely distributed in many organs in the settings of tissue injury, repair, and remodeling, including embryogenesis and oncogenesis are discussed, and the newly appreciated roles of proteinases as signaling molecules that can act as either functional agonists or antagonists are highlighted.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources