Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jun;87(6):3152-5.
doi: 10.1152/jn.2002.87.6.3152.

Taste receptor cell responses to the bitter stimulus denatonium involve Ca2+ influx via store-operated channels

Affiliations
Free article

Taste receptor cell responses to the bitter stimulus denatonium involve Ca2+ influx via store-operated channels

Tatsuya Ogura et al. J Neurophysiol. 2002 Jun.
Free article

Abstract

Previous studies in rat and mouse have shown that brief exposure to the bitter stimulus denatonium induces an increase in [Ca2+]i due to Ca2+ release from intracellular Ca2+ stores, rather than Ca2+ influx. We report here that prolonged exposure to denatonium induces sustained increases in [Ca2+]i that are dependent on Ca2+ influx. Similar results were obtained from taste cells of the mudpuppy, Necturus maculosus, as well as green fluorescent protein (GFP) tagged gustducin-expressing taste cells of transgenic mice. In a subset of mudpuppy taste cells, prolonged exposure to denatonium induced oscillatory Ca2+ responses. Depletion of Ca2+ stores by thapsigargin also induced Ca2+ influx, suggesting that Ca2+ store-operated channels (SOCs) are present in both mudpuppy taste cells and gustducin-expressing taste cells of mouse. Further, treatment with thapsigargin prevented subsequent responses to denatonium, suggesting that the SOCs were the source of the Ca2+ influx. These data suggest that SOCs may contribute to bitter taste transduction and to regulation of Ca2+ homeostasis in taste cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources