Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jun;58(Pt 6 Pt 2):921-7.
doi: 10.1107/s0907444902005322. Epub 2002 May 29.

Protein crystallization for genomics: towards high-throughput optimization techniques

Affiliations

Protein crystallization for genomics: towards high-throughput optimization techniques

Naomi E Chayen et al. Acta Crystallogr D Biol Crystallogr. 2002 Jun.

Abstract

Protein crystallization has gained a new strategic and commercial relevance in the next phase of the genome projects, in which X-ray crystallography will play a major role. Considerable advances have been made in the automation of protein preparation and also in the X-ray analysis and bioinformatics stages once diffraction-quality crystals are available. These advances have not yet been matched by equally good methods for the crystallization process itself. In the area of crystallization, the main effort and resources are currently being invested into the automation of screening procedures to identify potential crystallization conditions. However, in spite of the ability to generate numerous trials, so far only a small percentage of the proteins produced have led to structure determinations. This is because screening in itself is not usually enough; it has to be complemented by an equally important procedure in crystal production, namely crystal optimization. In the rush towards structural genomics, optimization techniques have been somewhat neglected, mainly because it was hoped that large-scale screening alone would produce the desired results. In addition, optimization has relied on particular individual methods that are often difficult to automate and to adapt to high throughput. This article addresses a major gap in the field of structural genomics by describing practical ways of automating individual optimization methods in order to adapt them to high-throughput techniques.

PubMed Disclaimer

Publication types

LinkOut - more resources