Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul;16(9):1105-7.
doi: 10.1096/fj.01-0828fje. Epub 2002 May 8.

Release of mitochondrial Ca2+ via the permeability transition activates endoplasmic reticulum Ca2+ uptake

Affiliations

Release of mitochondrial Ca2+ via the permeability transition activates endoplasmic reticulum Ca2+ uptake

David N Bowser et al. FASEB J. 2002 Jul.

Abstract

Regulatory interactions between the endoplasmic reticulum (ER) and the mitochondria in the control of intracellular free Ca2+ concentration ([Ca2+]I), may be of importance in the control of many cell functions, and particularly those involved in initiating cell death. We used targeted Ca2+ sensors (cameleons) to investigate the movement of Ca2+ between the ER and mitochondria of intact cells and focused on the role of the mitochondrial permeability transition (MPT) in this interaction. We hypothesized that release of Ca2+ from mitochondria in response to a known MPT agonist (atractyloside) would cause release of ER Ca2+, perpetuating cellular Ca2+ overload, and cell death. Targeted cameleons (mitochondria and ER) were imaged with confocal microscopy 2-3 days following transient transfection of human embryonic kidney 293 cells. Opening of the MPT resulted in specific loss of mitochondrial Ca2+ (blocked by cyclosporin A), which was sequestered initially by ER. The ER subsequently released this Ca2+ load, leading to a global Ca2+ elevation, a response that was not observed when ER Ca2+-ATPases were blocked with cyclopiazonic acid. Thus, ER plays an important role in moderating changes in intracellular Ca2+ following MPT and may play a key role in cell death initiated by mitochondrial mechanisms.

PubMed Disclaimer

LinkOut - more resources