Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Apr;11(2):167-82.
doi: 10.1191/0962280202sm279ra.

Inference for multi-state models from interval-censored data

Affiliations
Review

Inference for multi-state models from interval-censored data

D Commenges. Stat Methods Med Res. 2002 Apr.

Erratum in

  • Stat Methods Med Res. 2005 Apr;14(2):200

Abstract

Clinical statuses of subjects are often observed at a finite number of visits. This leads to interval-censored observations of times of transition from one state to another. The likelihood can still easily be written in terms of both transition probabilities and transition intensities. In homogeneous Markov models, transition probabilities can be expressed simply in terms of transition intensities, but this is not the case in more general multi-state models. In addition, inference in homogeneous Markov models is easy because these are parametric models. Non-parametric approaches to non-homogeneous Markov models may follow two paths: one is the completely non-parametric approach and can be seen as a generalisation of the Turnbull approach; the other implies a restriction to smooth intensities models. In particular, the penalized likelihood method has been applied to this problem. This paper gives a review of these topics.

PubMed Disclaimer

LinkOut - more resources