Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 May;19(5):587-99.
doi: 10.1089/089771502753754064.

Attenuation of the electrophysiological function of the corpus callosum after fluid percussion injury in the rat

Affiliations

Attenuation of the electrophysiological function of the corpus callosum after fluid percussion injury in the rat

A J Baker et al. J Neurotrauma. 2002 May.

Abstract

This study describes a new method used to evaluate axonal physiological dysfunction following fluid percussion induced traumatic brain injury (TBI) that may facilitate the study of the mechanisms and novel therapeutic strategies of posttraumatic diffuse axonal injury (DAI). Stimulated compound action potentials (CAP) were recorded extracellularly in the corpus callosum of superfused brain slices at 3 h, and 1, 3, and 7 days following central fluid percussion injury and demonstrated a temporal pattern of functional deterioration. The maximal CAP amplitude (CAPA) covaried with the intensity of impact 1 day following sham, mild (1.0-1.2 atm), and moderate (1.8-2.0 atm) injury (p < 0.05; 1.11 +/- 0.10, 0.82 +/- 0.11, and 0.49 +/- 0.08 mV, respectively). The CAPA in sham animals were approximately 1.1 mV and did not vary with survival interval (3 h, and 1, 3, and 7 days); however, they were significantly decreased at each time point following moderate injury (p < 0.05; 0.51 +/- 0.11, 0.49 +/- 0.08, 0.46 +/- 0.10, and 0.75 +/- 0.13 mV, respectively). The CAPA at 7 days in the injured group were higher than at 3 h, and 1 and 3 days. H&E and amyloid precursor protein (APP) light microscopic analysis confirmed previously reported trauma-induced axonal injury in the corpus callosum seen after fluid percussion injury. Increased APP expression was confirmed using Western blotting showing significant accumulation at 1 day (IOD 913.0 +/- 252.7; n = 3; p = 0.05), 3 days (IOD 753.1 +/- 159.1; n = 3; p = 0.03), and at 7 days (IOD 1093.8 = 105.0; n = 3; p = 0.001) compared to shams (IOD 217.6 +/- 20.4; n = 3). Thus, we report the characterization of white matter axonal dysfunction in the corpus callosum following TBI. This novel method was easily applied, and the results were consistent and reproducible. The electrophysiological changes were sensitive to the early effects of impact intensity, as well as to delayed changes occurring several days following injury. They also indicated a greater degree of attenuation than predicted by APP expression changes alone.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources