Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Aug 9;277(32):28942-7.
doi: 10.1074/jbc.M203961200. Epub 2002 May 31.

Reduction in intracellular calcium levels inhibits myoblast differentiation

Affiliations
Free article

Reduction in intracellular calcium levels inhibits myoblast differentiation

George A Porter Jr et al. J Biol Chem. .
Free article

Abstract

In myocytes, calcium plays an important role in intracellular signaling and contraction. However, the ability of calcium to modulate the differentiation of striated muscle cells is poorly understood. To examine this issue we studied C2C12 cells, which is a myoblast cell line that differentiates in vitro. First, we observed that the L-type calcium channel blockers nifedipine and verapamil effectively inhibited electrically induced calcium transients. Next, C2C12 cells were exposed to these agents during conditions that induce myocyte differentiation. In the presence of nifedipine and verapamil, myoblasts failed to form myotubes. Dantrolene and thapsigargin, which decrease intracellular calcium by different mechanisms, also inhibited differentiation. In addition, nifedipine and verapamil inhibited the expression of myosin heavy chain and myogenin, two markers of skeletal myoblast differentiation. In contrast, levels of the transcriptional factor Myf5, which is expressed in undifferentiated myoblasts, did not decline. Calcium channel blockade also prevented the expression of a reporter driven by the skeletal muscle alpha-actin promoter. These data demonstrate that lowering intracellular calcium levels inhibits the differentiation of skeletal myoblasts into mature myotubes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources