Essential genes are more evolutionarily conserved than are nonessential genes in bacteria
- PMID: 12045149
- PMCID: PMC1383730
- DOI: 10.1101/gr.87702
Essential genes are more evolutionarily conserved than are nonessential genes in bacteria
Abstract
The "knockout-rate" prediction holds that essential genes should be more evolutionarily conserved than are nonessential genes. This is because negative (purifying) selection acting on essential genes is expected to be more stringent than that for nonessential genes, which are more functionally dispensable and/or redundant. However, a recent survey of evolutionary distances between Saccharomyces cerevisiae and Caenorhabditis elegans proteins did not reveal any difference between the rates of evolution for essential and nonessential genes. An analysis of mouse and rat orthologous genes also found that essential and nonessential genes evolved at similar rates when genes thought to evolve under directional selection were excluded from the analysis. In the present study, we combine genomic sequence data with experimental knockout data to compare the rates of evolution and the levels of selection for essential versus nonessential bacterial genes. In contrast to the results obtained for eukaryotic genes, essential bacterial genes appear to be more conserved than are nonessential genes over both relatively short (microevolutionary) and longer (macroevolutionary) time scales.
Figures


References
-
- Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, Guild BC, deJonge BL, et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature. 1999;397:176–180. - PubMed
-
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. - PubMed
-
- Blattner FR, Plunkett G, III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, et al. The complete genome sequence of Escherichia coli K-12. Science. 1997;277:1453–1474. - PubMed
-
- Brookfield JF. What determines the rate of sequence evolution? Curr Biol. 2000;10:R410–R411. - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials