Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Apr;88(4):428-35.
doi: 10.1254/jjp.88.428.

Characteristics of ATP-induced current through P2X7 receptor in NG108-15 cells: unique antagonist sensitivity and lack of pore formation

Affiliations
Free article

Characteristics of ATP-induced current through P2X7 receptor in NG108-15 cells: unique antagonist sensitivity and lack of pore formation

Tomokazu Watano et al. Jpn J Pharmacol. 2002 Apr.
Free article

Abstract

ATP activates the mouse P2X7 receptor and induces a nonselective-cation current in NG108-15 cells. We investigated the effects of five receptor antagonists on the ATP-induced nonselective-cation current through P2X7 receptor (I(NS.P2X7)) in NG108-15 cells. Nonselective P2 receptor antagonists, RB-2, PPADS and suramin inhibited the I(NS.P2X7) with IC50 values of 4.3, 53 and 40 microM, respectively. However, KN-04, which is a potent antagonist of human P2X7 receptors but is not that of rat P2X7 receptors, had only a weak blocking effect. Furthermore, oxidized-ATP (300 microM), an antagonist of the P2X7 receptor-mediated pore-formation, did not affect the I(NS.P2X7). Prolonged ATP application did not increase the membrane permeability to large molecules, N-methyl-D-glucamine or Yo-Pro-1, indicating that pore-formation was not promoted by the P2X7 receptor activation in NG108-15 cells. These results suggest that antagonist sensitivities and pore-forming properties of the P2X7 receptors in NG108-15 cells are different from those of other cells types.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances