Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jun 5;94(11):819-25.
doi: 10.1093/jnci/94.11.819.

Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling

Affiliations

Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling

Yulong He et al. J Natl Cancer Inst. .

Abstract

Background: Vascular endothelial growth factor C (VEGF-C) stimulates tumor lymphangiogenesis (i.e., formation of lymphatic vessels) and metastasis to regional lymph nodes by interacting with VEGF receptor 3 (VEGFR-3). We sought to determine whether inhibiting VEGFR-3 signaling, and thus tumor lymphangiogenesis, would inhibit tumor metastasis.

Methods: We used the highly metastatic human lung cancer cell line NCI-H460-LNM35 (LNM35) and its parental line NCI-H460-N15 (N15) with low metastatic capacity. We inserted genes by transfection and established a stable N15 cell line secreting VEGF-C and a LNM35 cell line secreting the soluble fusion protein VEGF receptor 3-immunoglobulin (VEGFR-3-Ig, which binds VEGF-C and inhibits VEGFR-3 signaling). Control lines were transfected with mock vectors. Tumor cells were implanted subcutaneously into severe combined immunodeficient mice (n = 6 in each group), and tumors and metastases were examined 6 weeks later. In another approach, recombinant adenoviruses expressing VEGFR-3-Ig (AdR3-Ig) or beta-galactosidase (AdLacZ) were injected intravenously into LNM35 tumor-bearing mice (n = 14 and 7, respectively).

Results: LNM35 cells expressed higher levels of VEGF-C RNA and protein than did N15 cells. Xenograft mock vector-transfected LNM35 tumors showed more intratumoral lymphatic vessels (15.3 vessels per grid; 95% confidence interval [CI] = 13.3 to 17.4) and more metastases in draining lymph nodes (12 of 12) than VEGFR-3-Ig-transfected LNM35 tumors (4.1 vessels per grid; 95% CI = 3.4 to 4.7; P<.001, two-sided t test; and four lymph nodes with metastases of 12 lymph nodes examined). Lymph node metastasis was also inhibited in AdR3-Ig-treated mice (AdR3-Ig = 0 of 28 lymph nodes; AdLacZ = 11 of 14 lymph nodes). However, metastasis to the lungs occurred in all mice, suggesting that LNM35 cells can also spread via other mechanisms. N15 tumors overexpressing VEGF-C contained more lymphatic vessels than vector-transfected tumors but did not have increased metastatic ability.

Conclusions: Lymph node metastasis appears to be regulated by additional factors besides VEGF-C. Inhibition of VEGFR-3 signaling can suppress tumor lymphangiogenesis and metastasis to regional lymph nodes but not to lungs.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

Substances

LinkOut - more resources