Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 May-Jun;7(3):152-6.
doi: 10.1159/000058301.

Stress pathways in the rat cochlea and potential for protection from acquired deafness

Affiliations

Stress pathways in the rat cochlea and potential for protection from acquired deafness

Richard A Altschuler et al. Audiol Neurootol. 2002 May-Jun.

Abstract

Noise overstimulation will induce or influence intracellular molecular pathways in the cochlea. One of these is the 'classical' stress response pathway involving heat shock proteins. Hsp70 is induced in the cochlea by a wide variety of stresses including noise, hyperthermia and ototoxic drugs. When a stress that induces Hsp70 is applied to the cochlea, there is protection from a subsequent noise that would normally cause a permanent hearing loss. An upstream regulator of heat shock protein transcription, heat shock factor 1, is expressed in the cochlea and activated by stress. Mice lacking this heat shock factor have reduced recovery from noise-induced hearing loss. The same noise exposure that induces Hsp70 also increases the level of glial cell line-derived neurotrophic factor in the cochlea. Moreover, when this neurotrophic factor is applied into the perilymph of scala tympani prior to a noise exposure there is a significant reduction in hair cell loss and hearing loss. With the potential for activation of multiple pathways in the response to noise, gene microarrays can be useful to examine global gene expression. Initial studies examined differential gene expression immediately following a mild noise exposure (from which there is complete recovery) versus an intense noise (giving profound permanent deafness). Differential expression of several immediate early genes was found following the intense but not the mild noise exposure.

PubMed Disclaimer

MeSH terms