Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Jun;122(7):2032-48.
doi: 10.1053/gast.2002.33584.

Evolving pathophysiologic models of functional gastrointestinal disorders

Affiliations
Review

Evolving pathophysiologic models of functional gastrointestinal disorders

Emeran A Mayer et al. Gastroenterology. 2002 Jun.

Abstract

In contrast to most other disorders of the digestive system, functional disorders of the gut continue to be defined by symptom criteria rather than by biological markers. At the same time, animal models of functional gastrointestinal disorders in which to test pathophysiologic hypotheses are lacking. The aim of this report is to critically review recently proposed conceptual as well as animal models of functional gastrointestinal disorders. Converging disease models have been proposed that postulate an enhanced responsiveness of neural, immune, or neuroimmune circuits in the central nervous system or in the gut to exteroceptive (psychosocial) or interoceptive (tissue irritation, inflammation, infection) perturbations of the organism's homeostasis. The enhanced responsiveness results in dysregulation of gut motility, epithelial function (immune, permeability), and visceral hypersensitivity, which in turn produce irritable bowel syndrome symptoms. These conceptual models provide plausible mechanisms for irritable bowel syndrome symptom generation and are consistent with extensive epidemiologic and pathophysiologic data. Several animal models have recently been proposed that mimic key features of these conceptual disease models. They fall into models triggered by centrally targeted stimuli (neonatal stress, post-traumatic stress disorder) or those triggered by peripherally targeted stimuli (infection, inflammation). Depending on the timing of the trigger (neonatal vs. adult), the changes induced in the animal may be permanent or transient. Future development of existing and novel models involves the use of transgenic and knockout animals, as well as the demonstration of predictive validity in terms of responsiveness to candidate drugs.

PubMed Disclaimer

LinkOut - more resources