Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2002 Mar;5(1):73-103.
doi: 10.1017/S1461145702002791.

Neuropsychiatric applications of transcranial magnetic stimulation: a meta analysis

Affiliations
Free article
Meta-Analysis

Neuropsychiatric applications of transcranial magnetic stimulation: a meta analysis

Tal Burt et al. Int J Neuropsychopharmacol. 2002 Mar.
Free article

Abstract

Transcranial magnetic stimulation (TMS) is a technology that allows for non-invasive modulation of the excitability and function of discrete brain cortical areas. TMS uses alternating magnetic fields to induce electric currents in cortical tissue. In psychiatry, TMS has been studied primarily as a potential treatment for major depression. Most studies indicate that slow-frequency repetitive TMS (rTMS) and higher frequency rTMS have antidepressant properties. A meta-analysis of controlled studies indicates that this effect is fairly robust from a statistical viewpoint. However, effect sizes are heterogeneous, and few studies have shown that rTMS results in substantial rates of clinical response or remission, and the durability of antidepressant effects is largely unknown. We review in detail rTMS studies in the treatment of depression, as well as summarize treatment studies of mania, obsessive-compulsive disorder, post-traumatic stress disorder, and schizophrenia. We also review the application of TMS in the study of the pathophysiology of psychiatric disorders and summarize studies of the safety of TMS in human subjects.

PubMed Disclaimer

Publication types

MeSH terms