Cod1p/Spf1p is a P-type ATPase involved in ER function and Ca2+ homeostasis
- PMID: 12058017
- PMCID: PMC2174042
- DOI: 10.1083/jcb.200203052
Cod1p/Spf1p is a P-type ATPase involved in ER function and Ca2+ homeostasis
Abstract
The internal environment of the ER is regulated to accommodate essential cellular processes, yet our understanding of this regulation remains incomplete. Cod1p/Spf1p belongs to the widely conserved, uncharacterized type V branch of P-type ATPases, a large family of ion pumps. Our previous work suggested Cod1p may function in the ER. Consistent with this hypothesis, we localized Cod1p to the ER membrane. The cod1Delta mutant disrupted cellular calcium homeostasis, causing increased transcription of calcium-regulated genes and a synergistic increase in cellular calcium when paired with disruption of the Golgi apparatus-localized Ca2+ pump Pmr1p. Deletion of COD1 also impaired ER function, causing constitutive activation of the unfolded protein response, hypersensitivity to the glycosylation inhibitor tunicamycin, and synthetic lethality with deletion of the unfolded protein response regulator HAC1. Expression of the Drosophila melanogaster homologue of Cod1p complemented the cod1Delta mutant. Finally, we demonstrated the ATPase activity of the purified protein. This study provides the first biochemical characterization of a type V P-type ATPase, implicates Cod1p in ER function and ion homeostasis, and indicates that these functions are conserved among Cod1p's metazoan homologues.
Figures










References
-
- Ahlers, J. 1981. Temperature effects on kinetic properties of plasma membrane ATPase from the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta. 649:550–556. - PubMed
-
- Arslan, P., F. Di Virgilio, M. Beltrame, R.Y. Tsien, and T. Pozzan. 1985. Cytosolic Ca2+ homeostasis in Ehrlich and Yoshida carcinomas. A new, membrane-permeant chelator of heavy metals reveals that these ascites tumor cell lines have normal cytosolic free Ca2+. J. Biol. Chem. 260:2719–2727. - PubMed
-
- Axelsen, K.B., and M.G. Palmgren. 1998. Evolution of substrate specificities in the P-type ATPase superfamily. J. Mol. Evol. 46:84–101. - PubMed
-
- Bais, R. 1975. A rapid and sensitive radiometric assay for adenosine triphosphatase activity using Cerenkov radiation. Anal. Biochem. 63:271–273. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous