Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Aug 30;277(35):32046-53.
doi: 10.1074/jbc.M201750200. Epub 2002 Jun 10.

Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability

Affiliations
Free article

Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability

Karie N Dahlgren et al. J Biol Chem. .
Free article

Abstract

Genetic evidence predicts a causative role for amyloid-beta (A beta) in Alzheimer's disease. Recent debate has focused on whether fibrils (amyloid) or soluble oligomers of A beta are the active species that contribute to neurodegeneration and dementia. We developed two aggregation protocols for the consistent production of stable oligomeric or fibrillar preparations of A beta-(1-42). Here we report that oligomers inhibit neuronal viability 10-fold more than fibrils and approximately 40-fold more than unaggregated peptide, with oligomeric A beta-(1-42)-induced inhibition significant at 10 nm. Under A beta-(1-42) oligomer- and fibril-forming conditions, A beta-(1-40) remains predominantly as unassembled monomer and had significantly less effect on neuronal viability than preparations of A beta-(1-42). We applied the aggregation protocols developed for wild type A beta-(1-42) to A beta-(1-42) with the Dutch (E22Q) or Arctic (E22G) mutations. Oligomeric preparations of the mutations exhibited extensive protofibril and fibril formation, respectively, but were not consistently different from wild type A beta-(1-42) in terms of inhibition of neuronal viability. However, fibrillar preparations of the mutants appeared larger and induced significantly more inhibition of neuronal viability than wild type A beta-(1-42) fibril preparations. These data demonstrate that protocols developed to produce oligomeric and fibrillar A beta-(1-42) are useful in distinguishing the structural and functional differences between A beta-(1-42) and A beta-(1-40) and genetic mutations of A beta-(1-42).

PubMed Disclaimer

LinkOut - more resources