Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Aug 30;277(35):31327-34.
doi: 10.1074/jbc.M203275200. Epub 2002 Jun 10.

Synthetic miniprion PrP106

Affiliations
Free article

Synthetic miniprion PrP106

Valentina Bonetto et al. J Biol Chem. .
Free article

Abstract

Elucidation of structure and biological properties of the prion protein scrapie (PrP(Sc)) is fundamental to an understanding of the mechanism of conformational transition of cellular (PrP(C)) into disease-specific isoforms and the pathogenesis of prion diseases. Unfortunately, the insolubility and heterogeneity of PrP(Sc) have limited these studies. The observation that a construct of 106 amino acids (termed PrP106 or miniprion), derived from mouse PrP and containing two deletions (Delta 23-88, Delta 141-176), becomes protease-resistant when expressed in scrapie-infected neuroblastoma cells and sustains prion replication when expressed in PrP(0/0) mice prompted us to generate a corresponding synthetic peptide (sPrP106) to be used for biochemical and cell culture studies. sPrP106 was obtained successfully with a straightforward procedure, which combines classical stepwise solid phase synthesis with a purification strategy based on transient labeling with a lipophilic chromatographic probe. sPrP106 readily adopted a beta-sheet structure, aggregated into branched filamentous structures without ultrastructural and tinctorial properties of amyloid, exhibited a proteinase K-resistant domain spanning residues 134-217, was highly toxic to primary neuronal cultures, and induced a remarkable increase in membrane microviscosity. These features are central properties of PrP(Sc) and make sPrP106 an excellent tool for investigating the molecular basis of the conformational conversion of PrP(C) into PrP(Sc) and prion disease pathogenesis.

PubMed Disclaimer

Publication types

MeSH terms

Grants and funding

LinkOut - more resources