Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Jun;15(6):529-39.
doi: 10.1094/MPMI.2002.15.6.529.

Phylogeny and genomic organization of the TIR and non-tIR NBS-LRR resistance gene family in Medicago truncatula

Affiliations
Free article
Comparative Study

Phylogeny and genomic organization of the TIR and non-tIR NBS-LRR resistance gene family in Medicago truncatula

Hongyan Zhu et al. Mol Plant Microbe Interact. 2002 Jun.
Free article

Abstract

Sequences homologous to the nucleotide binding site (NBS) domain of NBS-leucine-rich repeat (LRR) resistance genes were retrieved from the model legume M. truncatula through several methods. Phylogenetic analysis classified these sequences into TIR (toll and interleukin-1 receptor) and non-TIR NBS subfamilies and further subclassified them into several well-defined clades within each subfamily. Comparison of M. truncatula NBS sequences with those from several closely related legumes, including members of the tribes Trifoleae, Viceae, and Phaseoleae, reveals that most clades contain sequences from multiple legume species. Moreover, sequences from species within the closely related Trifoleae and Viceae tribes (e.g., Medicago and Pisum spp.) tended to be cophyletic and distinct from sequences of Phaseoleae species (e.g., soybean and bean). These results suggest that the origin of major clades within the NBS-LRR family predate radiation of these Papilionoid legumes, while continued diversification of these sequences mirrors speciation within this legume subfamily. Detailed genetic and physical mapping of both TIR and non-TIR NBS sequences in M. truncatula reveals that most NBS sequences are organized into clusters, and few, if any, clusters contain both TIR and non-TIR sequences. Examples were found, however, of physical clusters that contain sequences from distinct phylogenetic clades within the TIR or non-TIR subfamilies. Comparative mapping reveals several blocks of resistance gene loci that are syntenic between M. truncatula and soybean and between M. truncatula and pea.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources