Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul;283(1):F197-201.
doi: 10.1152/ajprenal.00356.2001.

Two-photon excitation fluorescence imaging of the living juxtaglomerular apparatus

Affiliations
Free article

Two-photon excitation fluorescence imaging of the living juxtaglomerular apparatus

János Peti-Peterdi et al. Am J Physiol Renal Physiol. 2002 Jul.
Free article

Erratum in

  • Am J Physiol Renal Physiol 2002 Dec;283(6):following table of contents

Abstract

Recently, multiphoton excitation fluorescence microscopy has been developed that offers important advantages over confocal imaging, particularly for in vivo visualization of thick tissue samples. We used this state-of-the-art technique to capture high-quality images and study the function of otherwise inaccessible cell types and complex cell structures of the juxtaglomerular apparatus (JGA) in living preparations of the kidney. This structure has multiple cell types that exhibit a complex array of functions, which regulate the process of filtrate formation and renal hemodynamics. We report, for the first time, on high-resolution three-dimensional morphology and Z-sectioning through isolated, perfused kidney glomeruli, tubules, and JGA. Time-series images show how alterations in tubular fluid composition cause striking changes in single-cell volume of the unique macula densa tubular epithelium in situ and how they also affect glomerular filtration through alterations in associated structures within the JGA. In addition, calcium imaging of the glomerulus and JGA demonstrates the utility of this system in capturing the complexity of events and effects that are exerted by the specific hypertensive autacoid angiotensin II. This imaging approach to the study of isolated, perfused live tissue with multiphoton microscopy may be applied to other biological systems in which multiple cell types form a functionally integrated syncytium.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources