Ion regulation in the brain: implications for pathophysiology
- PMID: 12061505
- DOI: 10.1177/1073858402008003011
Ion regulation in the brain: implications for pathophysiology
Abstract
Ions in the brain are regulated independently from plasma levels by active transport across choroid plexus epithelium and cerebral capillary endothelium, assisted by astrocytes. In "resting" brain tissue, extracellular potassium ([K+]o) is lower and [H]o is higher (i.e., pHo is lower) than elsewhere in the body. This difference probably helps to maintain the stability of cerebral function because both high [K]o and low [H+]o enhance neuron excitability. Decrease in osmolarity enhances synaptic transmission and neuronal excitability whereas increased osmolarity has the opposite effect. Iso-osmotic low Na+ concentration also enhances voltage-dependent Ca2+ currents and synaptic transmission. Hypertonicity is the main cause of diabetic coma. In normally functioning brain tissue, the fluctuations in ion levels are limited, but intense neuronal excitation causes [K+]o to rise and [Na+]o, [Ca2+]o to fall. When excessive excitation, defective inhibition, energy failure, mechanical trauma, or blood-brain barrier defects drive ion levels beyond normal limits, positive feedback can develop as abnormal ion distributions influence neuron function, which in turn aggravates ion maldistribution. Computer simulation confirmed that elevation of [K+]o can lead to such a vicious circle and ignite seizures, spreading depression (SD), or hypoxic SD-like depolarization (anoxic depolarization).
Similar articles
-
Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations.J Neurophysiol. 2000 Jul;84(1):495-512. doi: 10.1152/jn.2000.84.1.495. J Neurophysiol. 2000. PMID: 10899222
-
Conditions for the triggering of spreading depression studied with computer simulations.J Neurophysiol. 2002 Nov;88(5):2700-12. doi: 10.1152/jn.00237.2002. J Neurophysiol. 2002. PMID: 12424305
-
The role of extracellular potassium dynamics in the different stages of ictal bursting and spreading depression: a computational study.J Theor Biol. 2009 May 21;258(2):219-28. doi: 10.1016/j.jtbi.2009.01.032. Epub 2009 Feb 7. J Theor Biol. 2009. PMID: 19490858
-
Mechanisms of spreading depression and hypoxic spreading depression-like depolarization.Physiol Rev. 2001 Jul;81(3):1065-96. doi: 10.1152/physrev.2001.81.3.1065. Physiol Rev. 2001. PMID: 11427692 Review.
-
Epithelial pathways in choroid plexus electrolyte transport.Physiology (Bethesda). 2010 Aug;25(4):239-49. doi: 10.1152/physiol.00011.2010. Physiology (Bethesda). 2010. PMID: 20699470 Review.
Cited by
-
The Widespread Network Effects of Focal Epilepsy.J Neurosci. 2018 Sep 19;38(38):8107-8109. doi: 10.1523/JNEUROSCI.1471-18.2018. J Neurosci. 2018. PMID: 30232147 Free PMC article. No abstract available.
-
Rapid adaptation to elevated extracellular potassium in the pyloric circuit of the crab, Cancer borealis.J Neurophysiol. 2020 May 1;123(5):2075-2089. doi: 10.1152/jn.00135.2020. Epub 2020 Apr 22. J Neurophysiol. 2020. PMID: 32319837 Free PMC article.
-
Ionic and synaptic mechanisms of seizure generation and epileptogenesis.Neurobiol Dis. 2019 Oct;130:104485. doi: 10.1016/j.nbd.2019.104485. Epub 2019 May 28. Neurobiol Dis. 2019. PMID: 31150792 Free PMC article. Review.
-
Neuroprotection by alpha 2-adrenergic agonists in cerebral ischemia.Curr Neuropharmacol. 2005 Oct;3(4):317-23. doi: 10.2174/157015905774322534. Curr Neuropharmacol. 2005. PMID: 18369397 Free PMC article.
-
In vivo models of cortical acquired epilepsy.J Neurosci Methods. 2016 Feb 15;260:185-201. doi: 10.1016/j.jneumeth.2015.08.030. Epub 2015 Sep 3. J Neurosci Methods. 2016. PMID: 26343530 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous