Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 May;54(2):204-16.
doi: 10.1016/s0008-6363(02)00223-7.

Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation

Affiliations
Review

Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation

José Jalife et al. Cardiovasc Res. 2002 May.

Abstract

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and the major cardiac cause of stroke. Recent studies in patients with paroxysmal AF have shown that the arrhythmia is triggered by focal sources localized usually in one of the cardiac veins. However, in chronic AF, the prevailing theory is that multiple random wavelets of activation coexist to create an unorganized atrial rhythm. Experiments in isolated hearts have demonstrated that stable, self-sustained rotors can exist in the atria and that high frequency activation by such rotors results in the complex patterns of activation that characterize AF. Studies in animals and patients support the view that at least some cases of paroxysmal and chronic AF are the result of the uninterrupted periodic activity of discrete reentrant sites. In this brief review article, we examine historical data and more recent experimental evidence behind the hypothesis that AF may be organized by one, or a small number of high-frequency reentrant sources localized in the left atrium. We then discuss the potential implications and evidence supporting such a hypothesis for human AF. Finally, we suggest future studies designed to unravel the detailed molecular, cellular and pathophysiological mechanisms responsible for AF initiation and maintenance. The work discussed may open potentially exciting new diagnostic and therapeutic possibilities.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources