Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001;95(3-4):210-24.
doi: 10.1159/000059348.

The pattern of phylogenomic evolution of the Canidae

Affiliations

The pattern of phylogenomic evolution of the Canidae

W G Nash et al. Cytogenet Cell Genet. 2001.

Abstract

Canidae species fall into two categories with respect to their chromosome composition: those with high numbered largely acrocentric karyotypes and others with a low numbered principally metacentric karyotype. Those species with low numbered metacentric karyotypes are derived from multiple independent fusions of chromosome segments found as acrocentric chromosomes in the high numbered species. Extensive chromosome homology is apparent among acrocentric chromosome arms within Canidae species; however, little chromosome arm homology exists between Canidae species and those from other Carnivore families. Here we use Zoo-FISH (fluorescent in situ hybridization, also called chromosomal painting) probes from flow-sorted chromosomes of the Japanese raccoon dog (Nyctereutes procyonoides) to examine two phylogenetically divergent canids, the arctic fox (Alopex lagopus) and the crab-eating fox (Cerdocyon thous). The results affirm intra-canid chromosome homologies, also implicated by G-banding. In addition, painting probes from domestic cat (Felis catus), representative of the ancestral carnivore karyotype (ACK), and giant panda (Ailuropoda melanoleuca) were used to define primitive homologous segments apparent between canids and other carnivore families. Canid chromosomes seem unique among carnivores in that many canid chromosome arms are mosaics of two to four homology segments of the ACK chromosome arms. The mosaic pattern apparently preceded the divergence of modern canid species since conserved homology segments among different canid species are common, even though those segments are rearranged relative to the ancestral carnivore genome arrangement. The results indicate an ancestral episode of extensive centric fission leading to an ancestral canid genome organization that was subsequently reorganized by multiple chromosome fusion events in some but not all Canidae lineages.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources