Plasmodium vivax promiscuous T-helper epitopes defined and evaluated as linear peptide chimera immunogens
- PMID: 12065487
- PMCID: PMC128085
- DOI: 10.1128/IAI.70.7.3479-3492.2002
Plasmodium vivax promiscuous T-helper epitopes defined and evaluated as linear peptide chimera immunogens
Abstract
Clinical trials of malaria vaccines have confirmed that parasite-derived T-cell epitopes are required to elicit consistent and long-lasting immune responses. We report here the identification and functional characterization of six T-cell epitopes that are present in the merozoite surface protein-1 of Plasmodium vivax (PvMSP-1) and bind promiscuously to four different HLA-DRB1* alleles. Each of these peptides induced lymphoproliferative responses in cells from individuals with previous P. vivax infections. Furthermore, linear-peptide chimeras containing the promiscuous PvMSP-1 T-cell epitopes, synthesized in tandem with the Plasmodium falciparum immunodominant circumsporozoite protein (CSP) B-cell epitope, induced high specific antibody titers, cytokine production, long-lasting immune responses, and immunoglobulin G isotype class switching in BALB/c mice. A linear-peptide chimera containing an allele-restricted P. falciparum T-cell epitope with the CSP B-cell epitope was not effective. Two out of the six promiscuous T-cell epitopes exhibiting the highest anti-peptide response also contain B-cell epitopes. Antisera generated against these B-cell epitopes recognize P. vivax merozoites in immunofluorescence assays. Importantly, the anti-peptide antibodies generated to the CSP B-cell epitope inhibited the invasion of P. falciparum sporozoites into human hepatocytes. These data and the simplicity of design of the chimeric constructs highlight the potential of multimeric, multistage, and multispecies linear-peptide chimeras containing parasite promiscuous T-cell epitopes for malaria vaccine development.
Figures




Similar articles
-
The in Vitro Antigenicity of Plasmodium vivax Rhoptry Neck Protein 2 (PvRON2) B- and T-Epitopes Selected by HLA-DRB1 Binding Profile.Front Cell Infect Microbiol. 2018 May 15;8:156. doi: 10.3389/fcimb.2018.00156. eCollection 2018. Front Cell Infect Microbiol. 2018. PMID: 29868512 Free PMC article.
-
Potent immunogenic short linear peptide constructs composed of B cell epitopes and Pan DR T helper epitopes (PADRE) for antibody responses in vivo.Vaccine. 1997 Mar;15(4):441-8. doi: 10.1016/s0264-410x(97)00186-2. Vaccine. 1997. PMID: 9141216
-
Induction of Multifunctional Broadly Reactive T Cell Responses by a Plasmodium vivax Circumsporozoite Protein Recombinant Chimera.Infect Immun. 2015 Sep;83(9):3749-61. doi: 10.1128/IAI.00480-15. Epub 2015 Jul 13. Infect Immun. 2015. PMID: 26169267 Free PMC article.
-
The optimization of helper T lymphocyte (HTL) function in vaccine development.Immunol Res. 1998;18(2):79-92. doi: 10.1007/BF02788751. Immunol Res. 1998. PMID: 9844827 Review.
-
Scoping review of the applications of peptide microarrays on the fight against human infections.PLoS One. 2022 Jan 25;17(1):e0248666. doi: 10.1371/journal.pone.0248666. eCollection 2022. PLoS One. 2022. PMID: 35077448 Free PMC article.
Cited by
-
Fasciola hepatica: identification of CD4+ T-helper epitopes from the 11.5 kDa saposin-like protein SAP-2 using synthetic peptides.Exp Parasitol. 2007 Sep;117(1):65-73. doi: 10.1016/j.exppara.2007.03.012. Epub 2007 Mar 27. Exp Parasitol. 2007. PMID: 17475253 Free PMC article.
-
A hybrid multistage protein vaccine induces protective immunity against murine malaria.Infect Immun. 2012 Apr;80(4):1491-501. doi: 10.1128/IAI.05980-11. Epub 2012 Jan 17. Infect Immun. 2012. PMID: 22252877 Free PMC article.
-
A chimeric protein-based malaria vaccine candidate induces robust T cell responses against Plasmodium vivax MSP119.Sci Rep. 2016 Oct 6;6:34527. doi: 10.1038/srep34527. Sci Rep. 2016. PMID: 27708348 Free PMC article.
-
Promiscuous T-cell epitopes of Plasmodium merozoite surface protein 9 (PvMSP9) induces IFN-gamma and IL-4 responses in individuals naturally exposed to malaria in the Brazilian Amazon.Vaccine. 2010 Apr 19;28(18):3185-91. doi: 10.1016/j.vaccine.2010.02.046. Epub 2010 Feb 26. Vaccine. 2010. PMID: 20189487 Free PMC article.
-
Expression, purification, and characterization of the immunological response to a 40-kilodalton Plasmodium vivax tryptophan-rich antigen.Infect Immun. 2008 Jun;76(6):2576-86. doi: 10.1128/IAI.00677-07. Epub 2008 Mar 24. Infect Immun. 2008. PMID: 18362136 Free PMC article.
References
-
- Arias, A. E., and A. Corredor. 1989. Low response of Colombian strains of Plasmodium vivax to classical antimalarial therapy. Trop. Med. Parasitol. 40:21-23. - PubMed
-
- Boykins, R. A., M. Joshi, C. Syin, S. Dhawan, and H. Nakhasi. 2000. Synthesis and construction of a novel multiple peptide conjugate system: strategy for a subunit vaccine design. Peptides 21:9-17. - PubMed
-
- Breman, J. G. 2001. The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. Am. J. Trop. Med. Hyg. 64:1-11. - PubMed
-
- Brown, J. H., T. S. Jardetzky, J. C. Gorga, L. J. Stern, R. G. Urban, J. L. Strominger, and D. C. Wiley. 1993. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33-39. - PubMed
-
- Calvo-Calle, J. M., J. Hammer, F. Sinigaglia, P. Clavijo, Z. R. Moya-Castro, and E. H. Nardin. 1997. Binding of malaria T cell epitopes to DR and DQ molecules in vitro correlates with immunogenicity in vivo: identification of a universal T cell epitope in the Plasmodium falciparum circumsporozoite protein. J. Immunol. 159:1362-1373. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials