Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul;302(1):328-36.
doi: 10.1124/jpet.302.1.328.

A novel phenylaminotetralin radioligand reveals a subpopulation of histamine H(1) receptors

Affiliations

A novel phenylaminotetralin radioligand reveals a subpopulation of histamine H(1) receptors

Raymond G Booth et al. J Pharmacol Exp Ther. 2002 Jul.

Abstract

Previously, (-)-trans-1-phenyl-3-N,N-dimethylamino-1,2,3,4-tetrahydronaphthalene ([-]-trans-H(2)-PAT) was shown to activate stereospecifically histamine H(1) receptors coupled to modulation of tyrosine hydroxylase activity in guinea pig and rat forebrain in vitro and in vivo. Furthermore, the novel radioligand [(3)H](-)-trans-H(2)-PAT was shown to label selectively H(1) receptors in guinea pig and rat brain with high affinity (K(D), ~0.1 and 0.5 nM, respectively) and a B(max) about 50 and 15%, respectively, of that observed for the H(1) antagonist radioligand [(3)H]mepyramine. In the current study, [(3)H](-)-trans-H(2)-PAT-labeled cloned guinea pig and human H(1) receptors in Chinese hamster ovary (CHO) cell membranes with high affinity (K(D), ~0.08 and 0.23 nM, respectively) and a B(max) about 15% of that observed for [(3)H]mepyramine. The binding of H(2)-PAT to H(1) receptors in both CHO-H(1) cell lines was stereoselective with the (-)-trans-isomer having affinity (K(i), ~1.5 nM) about 4-, 20-, and 50-times higher than the (-)-cis-, (+)-trans-, and (+)-cis-isomers, respectively; the affinity of (-)-trans-H(2)-PAT was unaffected by excess GTP. In functional assays, (-)-trans-H(2)-PAT was a full antagonist of histamine H(1)-mediated stimulation of phospholipase C (PLC) and [(3)H]inositol phosphates (IP) formation in CHO-H(1) cells, a full inverse agonist of constitutively active H(1) receptors in COS-7-H(1) cells, and a full competitive antagonist (pA(2) = 9.2) of histamine H(1)-mediated contraction of guinea pig ileum. It is concluded that (-)-trans-H(2)-PAT is an antagonist at H(1) receptors coupled to PLC/IP formation and smooth muscle contraction. Meanwhile, the observation that [(3)H](-)-trans-H(2)-PAT labels only a subpopulation of H(1) receptors and that (-)-trans-H(2)-PAT activates H(1) receptors coupled to modulation of tyrosine hydroxylase suggests that there may be post-translational H(1) receptor heterogeneity.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources