Shear stress induces expression of vascular endothelial growth factor receptor Flk-1/KDR through the CT-rich Sp1 binding site
- PMID: 12067897
- DOI: 10.1161/01.atv.0000018300.43492.83
Shear stress induces expression of vascular endothelial growth factor receptor Flk-1/KDR through the CT-rich Sp1 binding site
Abstract
Fluid shear stress is 1 of the major factors that control gene expression in vascular endothelial cells. We investigated the role of shear stress in the regulation of the expression of fetal liver kinase-1/kinase domain region (Flk-1/KDR), a vascular endothelial growth factor receptor, by using human umbilical vein endothelial cells. Laminar shear stress (15 dyne/cm2) elevated Flk-1/KDR mRNA levels by approximately 3-fold for 8 hours, and the expression was upregulated within the range of 5 to 40 dyne/cm2. Deletion analysis of the 5'-flanking region of the Flk-1/KDR gene promoter by use of a luciferase reporter vector revealed that a shear stress-responsive element resided in the sequence between -94 and -31 bp, which contained putative nuclear factor-kappaB, activator protein-2, and GC-rich Sp1 and CT-rich Sp1 binding sites. Electrophoretic mobility shift assay demonstrated that nuclear extract was bound to the GC-rich Sp1 sites and the CT-rich Sp1 site with a similar pattern. However, shear stress enhanced the DNA-protein interactions only on the CT-rich Sp1 site but not on the GC-rich Sp1 sites. A 3-bp mutation in the CT-rich Sp1 site eliminated the response to shear stress in electrophoretic mobility shift assay and luciferase reporter assay. These results suggest that shear stress induces Flk-1/KDR expression through the CT-rich Sp1 binding site.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous