Mechanisms regulating the copy numbers of six LTR retrotransposons in the genome of Drosophila melanogaster
- PMID: 12068968
- DOI: 10.1007/s00412-001-0174-0
Mechanisms regulating the copy numbers of six LTR retrotransposons in the genome of Drosophila melanogaster
Abstract
There has been debate over the mechanisms that control the copy number of transposable elements in the genome of Drosophila melanogaster. Target sites in D. melanogaster populations are occupied at low frequencies, suggesting that there is some form of selection acting against transposable elements. Three main theories have been proposed to explain how selection acts against transposable elements: insertions of a copy of a transposable element are selected against; chromosomal rearrangements caused by ectopic exchange between element copies are selected against; or the process of transposition itself is selected against. The three theories give different predictions for the pattern of transposable element insertions in the chromosomes of D. melanogaster. We analysed the abundance of six LTR (long terminal repeat) retrotransposons on the X and fourth chromosomes of multiple strains of D. melanogaster, which we compare with the predictions of each theory. The data suggest that no one theory can account for the insertion patterns of all six retrotransposons. Comparing our results with earlier work using these transposable element families, we find a significant correlation between studies in the particular model of copy number regulation supported by the proportion of elements on the X for the different transposable element families. This suggests that different retrotransposon families are regulated by different mechanisms.
Similar articles
-
Recent LTR retrotransposon insertion contrasts with waves of non-LTR insertion since speciation in Drosophila melanogaster.Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11340-5. doi: 10.1073/pnas.0702552104. Epub 2007 Jun 25. Proc Natl Acad Sci U S A. 2007. PMID: 17592135 Free PMC article.
-
Sequence divergence within transposable element families in the Drosophila melanogaster genome.Genome Res. 2003 Aug;13(8):1889-96. doi: 10.1101/gr.827603. Epub 2003 Jul 17. Genome Res. 2003. PMID: 12869581 Free PMC article.
-
Amplification of the 1731 LTR retrotransposon in Drosophila melanogaster cultured cells: origin of neocopies and impact on the genome.Gene. 2007 May 15;393(1-2):116-26. doi: 10.1016/j.gene.2007.02.001. Epub 2007 Feb 16. Gene. 2007. PMID: 17382490
-
Maintenance of transposable element copy number in natural populations of Drosophila melanogaster and D. simulans.Genetica. 1997;100(1-3):161-6. Genetica. 1997. PMID: 9440269 Review.
-
Mechanisms of LTR-Retroelement Transposition: Lessons from Drosophila melanogaster.Viruses. 2017 Apr 16;9(4):81. doi: 10.3390/v9040081. Viruses. 2017. PMID: 28420154 Free PMC article. Review.
Cited by
-
Paleogenomic record of the extinction of human endogenous retrovirus ERV9.J Virol. 2005 Jun;79(11):6997-7004. doi: 10.1128/JVI.79.11.6997-7004.2005. J Virol. 2005. PMID: 15890939 Free PMC article.
-
Recent LTR retrotransposon insertion contrasts with waves of non-LTR insertion since speciation in Drosophila melanogaster.Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11340-5. doi: 10.1073/pnas.0702552104. Epub 2007 Jun 25. Proc Natl Acad Sci U S A. 2007. PMID: 17592135 Free PMC article.
-
Characterization of high-copy-number retrotransposons from the large genomes of the louisiana iris species and their use as molecular markers.Genetics. 2003 Jun;164(2):685-97. doi: 10.1093/genetics/164.2.685. Genetics. 2003. PMID: 12807789 Free PMC article.
-
Population genomics of transposable elements in Drosophila melanogaster.Mol Biol Evol. 2011 May;28(5):1633-44. doi: 10.1093/molbev/msq337. Epub 2010 Dec 16. Mol Biol Evol. 2011. PMID: 21172826 Free PMC article.
-
Abundance and distribution of transposable elements in two Drosophila QTL mapping resources.Mol Biol Evol. 2013 Oct;30(10):2311-27. doi: 10.1093/molbev/mst129. Epub 2013 Jul 24. Mol Biol Evol. 2013. PMID: 23883524 Free PMC article.